
Results on the asymptotic conformal structure

of asymptotically flat vacuum solutions with

vanishing cosmological constant.



Two types of initial value problems.

Most important:

standard Cauchy problem, data on a space-like hypersurface
S with asymptotically euclidean end(s).

Standard example:

S̃ = {t = 0} ∼ IR3 in Minkowski space, induced data −h̃ = ẽ, χ̃ = 0.

By embedding of Minkowski space into the Einstein cosmos:

S̃ → S = S̃ ∪ {i} ∼ S3, ẽ→ dω2, χ̃→ χ = 0,

with i representing space-like infinity for (S̃, ẽ), dω2 = Ω2 ẽ on S̃,

Ω ∈ C∞(S) with Ω = 0, dΩ = 0, Hess(Ω) = c dω2 at i, c 6= 0.

If h̃, χ̃ ∈ C∞(S̃) are asymptotically euclidean vacuum data, then

h = Ω2 h̃ is not necessarily in C∞(S). But even if h ∈ C∞(S) then

dµ
νλρ = O(r−3) as r → 0 unless mADM = 0.

where r denotes the h-distance from i.

As a preparation study:

hyperboloidal initial value problem, data on a hypersurface H with
boundary Σ, thought of as being embedded into an asymptotically sim-
ple space-time such that Σ = H ∩ J + and H is space-like. Σ may have
several components.

Standard example:

extension of the space-like hyperboloid {t2− |x|2 = 1, t > 0} in Minkowski
space to J + with induced data. Space of constant negative curvature.

Basic differences:

Hyperboloidal problem intrinsically non-time-symmetric,

Ω(p) ∼ dist(p, i)2 on S while Ω(p) ∼ dist(p,Σ) on H.



Hyperboloidal initial data.

Construction of hyperboloidal data with non-vanishing, constant, mean
extrinsic physical curvature following the standard procedure:

L. Andersson, P.T. Chruściel, H. F., CMP, 1992
L. Andersson, P.T. Chruściel, CMP 1994, Diss. Math. 1996.

Prescribe certain ‘free data’: conformal metric hab and ‘trial χ̂ab’ on H,

obtain ‘remaining data’ (Ω, χab) by solving (degenerate) elliptic equa-
tions on H,

obtain ‘complete conformal data’ (di
jkl, . . .) by differentiation and algebra

(involves divisions by conformal factor).

Subtleties occur near Σ:

a) for hab, χ̂ab ∈ C∞(H) the remaining data and the complete conformal
data Ω, χab, d

i
jkl, . . . ∈ C∞(H \Σ) have in general a ‘polylogarithmic expan-

sions’ at Σ, i.e. an expansion in terms of xk logj x, where x denotes the
h-distance from Σ.

In particular: di
jkl is in general unbounded near Σ.

b) if hab, χ̂ab ∈ C∞(H) satisfy (a finite number of) ‘regularity conditions’
at Σ the remaining data Ω, χab as well as the complete conformal data
di

jkl, . . . are smooth on H.

c) if hab, χ̂ab ∈ C∞(H \ Σ) have polylogarithmic expansions at Σ, then the
complete conformal data di

jkl, . . . have polylogarithmic expansions at Σ.

What can be said about the evolution of these data ?



Evolution of hyperboloidal data.

The conformal field equations have been used to obtain the following
results:

Case (b):

the data evolve into a solution which admits a smooth ‘piece of J +’ in
the sense that it satisfies the first three conditions of asymptotic sim-
plicity.

If the data are sufficiently close to Minkowskian hyperboloidal data
the solution is null geodesically complete in the future and admits
a smooth conformal extension with a regular point i+ which represents
future time-like infinity.

Note: it is a non-trivial consequence of the conformal field equations
that they force the null generators of J + in a suitable gauge to
meet in the future at precisely one point.

Case (a) (Chruściel and Lengard (2001)):

the data evolve into a solution on a manifold M ∼ H×[0, 1[ with boundary
∂ M ∼ Σ× [0, 1[ such that the solution is smooth on M \ ∂ M ,

∂ M is ‘null’ in the sense that it is a limit of smooth null hypersurfaces
in M \ ∂ M ,
Ω → 0, dΩ →6= 0 at ∂ M .

The behaviour of the solution near ∂ M is controlled in terms of certain
weighted Sobolev spaces which admit singularities of the form di

jkl ∼ 1
x

with x the coordinate distance from ∂ M .

The solution is expected to admit a polylogarithmic expansion in terms
of x.

Which of these solutions can arise by Einstein evolution from asymp-
totically flat standard Cauchy data ?



Existence of asymptotically simple solutions.

The difficulties at space-like infinity are avoided if the data evolve into
a solution which is known explicitly near space-like infinity.

P. Chruściel, E. Delay, CQG, 2002 (cf. also J. Corvino, CMP, 2000):

Given smooth, asymptotically flat, time-symmetric initial data (h∗ab, IR
3)

satisfying the vacuum constraint R[h∗] = 0 and the reflection symmetry
h∗ab(x) = h∗ab(−x), then for given R > 0, k ≥ k∗ > 0

(i) ∃ hab ∈ Ck(IR3) such hab = h∗ab for |x| < R, hab = Schwarzschildm≥0

for |x| > 2R and R[h] = 0 on IR3.

(ii) ∃ C0-families hab(λ), λ ∈ [0, 1[, as above s.t. mh > 0 for λ > 0,
and hab → δab as λ→ 0 with fixed R and k.

The time evolution of these data admit smooth hyperboloidal hypersur-
faces for which a part coincides with the |x| ≤ 2R part of the Cauchy
hypersurface and the rest lies in the Schwarzschild part of the evolution.

These hyperboloidal hypersurfaces/data can be constructed such that
they approach Minkowskian hyperboloidal data as mh → 0.

The results on the hyperboloidal initial value problem imply:

There exist non-trivial asymptotically simple solutions which admit

complete conformal extension (including regular points i±) of class Ck

for specified k.

. . . finally, after 40 years . . . . . .

Very special: di
jkl(i

+) = 0.

For small mh: ∃ global conformal Gauss systems.

Possibility to calculate numerically entire space-times by solving the
general conformal field equations ?

‘∃ regular i±’ not an end in itself. What happens for large mh ?



The problems at space-like infinity.

The standard compactification adds a point i at infinity to the
space-like Cauchy hypersurface: S̃ ≡ {t = 0} → S = S̃ ∪ {i}

We have on S (r denoting a radial coordinate with r(i) = 0):

a conformal 3-metric h = O(1), which can be chosen to be smooth,
a conformal factor Ω = O(r2), which can not be smooth if m 6= 0,
a trace free conformal second fundamental form χab = Ω2 ψab, ψab = O( 1

r4 ).

The rescaled conformal Weyl tensor then has the electric part

dab = Ω−2
{
DaDbΩ− 1

3
habD

cDcΩ + Ω sab

}

−Ω3
{
ψc

c ψab − ψc
a ψcb −

1

3
hab ((ψc

c)
2 − ψcd ψcd)

}
= O(

1

r3 ),

and the magnetic part

d∗ab = −2Dc Ωψd(a εb)
cd − ΩDc ψd(a εb)

cd = O(
1

r3 ).

S. Dain, H. F., CMP 2001:
There exists a large class of data with h smooth at i and ψab = O( 1

r3 ) such
that all data for the conformal field equations have an expansion in rk

at i (i.e. no log r-terms).

If ψab = O( 1
r3 ): linear ADM-momentum = 0, ADM-angular momentum

6= 0 possible. Then dab = O( 1
r3 ), d

∗
ab = O( 1

r2 ).

If χab = 0 then d∗ab = 0 but dab = O( 1
r3 ), unless m = 0.

Consider in the following data on S with hab smooth and ψab = O( 1
r3 ) near

i such that all conformal data admit an expansion in rk.

Nevertheless: the nature of the r-ϑ-relations (ϑ denoting the angular
variables) destroys also the smoothness of terms of higher order in an
expansion in terms of rk.

Details of formal expansion type analysis quickly become complicated.

Gauge to be chosen smooth or rough at i ?

Transport of gauge by wave equations generates ‘roughness’ at J ± ?

Localization of J ± = {Ω = 0} possible if Ω is ‘rough’ ?



A new differentiable structure at space-like infinity.

Define a setting which admits a convenient analysis of the r-ϑ-relations.

Choose a conformal scaling for the initial data near i and an oriented
h-orthonormal frame {ea}a=1,2,3 at i.

Set ea(s) = sc
a ec with s = (sc

a) ∈ SO(3), transport ea(s) parallely along
h-geodesics tangent to e3(s) at i.

Denote by ρ the affine parameter on the geodesics with < e3, ρ >= 1,
ρ(i) = 0 and denote by ea(ρ, s) the frame obtained from ea(s) at value ρ.

Assume |ρ| < a, with Ba(i) a convex h-normal neighbourhood. Then:

]− a, a[×SO(3) 3 (ρ, s)
Φ→ ea(ρ, s) ∈ SO(S) defines a smooth embedding

into bundle SO(S) of oriented orthonormal frames over S.

The set B̂ ≡ Φ([0, a[×SO(3)) has boundary I
′0 ≡ {ρ = 0} ' SO(3) and

projection B̂
π→ Ba(i) which maps I

′0 onto i.

The action of SO(2) implies a factorization B̂′ π′
→ B′′ = B̂′/SO(2)

π′′
→ Ba(i)

where π′′, which maps π′(I0) ' S2 onto i, can be used to identify B′′\π′(I0)
with Ba(i) \ {i}.

By this identification the inner point i is replaced by a boundary diffeo-
morphic to the sphere S2: Ba(i) → (Ba(i) \ {i}) ∪ S2.

Instead:

Since we will work with a spin frame formalism it is much more natural
and convenient to pull back B̂′ to the bundle of normalized spin frames,
work on 4-dimensional manifold B̂ = [0, a[×SU(2) ∼ [0, a[×S3. Then B̂

carries action by U(1), is ‘coordinatized’ by ρ and s ∈ SU(2), and has
boundary I0 = {0} × S3 which projects onto {i}.

A function f on B̂ which is invariant under U(1) descends to a function
f∗ on Ba(i). Since f ∈ C∞(B̂) need not imply that f∗ ∈ C∞(Ba(i)), there
are functions on Ba which lift to smooth functions on B̂ without being
smooth at i.

We shall only consider functions which transform homogeneously under
the action of U(1) (have a well defined spin weight).



The regular finite initial value problem near space-like infinity.

To formulate near space-like infinity a useful initial value problem for
the general conformal field equations we choose a function κ = ρ µ with
µ ∈ C∞(B̂) and µ = 1 on I0 and define a new conformal scaling

Ω → Θ∗ = κ−1 Ω, h→ κ−2 h, . . .

In this scaling Θ = O(ρ), the metric coefficients diverge at I0, but the
frame coefficients remain/become smooth.

Further suitable data for the conformal Gauss system give

Θ = Θ∗

(
1− (

τ

f
)2
)
, d0 = −2 τ g, da

f, g, da ∈ C∞(B̂), 1 ≤ f <∞ on B̂, f = 1, g = 0 on I0.

The electric and the magnetic parts of the rescaled conformal
Weyl tensor transform into

dab = κ3 Ω−2
{
DaDbΩ− 1

3
habD

cDcΩ + Ω sab

}

−κ3 Ω3
{
ψc

c ψab − ψc
a ψcb −

1

3
hab ((ψc

c)
2 − ψcd ψcd)

}
= O(1),

d∗ab = −2κ3Dc Ωψd(a εb)
cd − κ3 ΩDc ψd(a εb)

cd = O(1),

and lift to smooth functions on B̂. In fact all unknowns in the general
conformal field equations lift to functions on B̂ which can be extended
smoothly through I0 into the region where ρ ≤ 0.

The hyperbolic equations are to be solved on the ‘physical manifold’

M̃ = {ρ > 0, s ∈ SU(2), −f(ρ, s) < τ < f(ρ, s)},

null infinity is given in our gauge by

J ± = {ρ > 0, s ∈ SU(2), τ = ±f(ρ, s)},

the cylinder at space-like infinity is given by

I = {ρ = 0, s ∈ SU(2), |τ | < 1}.

It touches J ± at

I± = {ρ = 0, s ∈ SU(2), τ = ±1}.



The evolution near the cylinder at space-like infinity.

In the following we assume that χab = 0 near i.

With w = (eµ
k, Γ̂i

j
k, L̂jk) and z = (di

jkl) the reduced equations read

(∗) Aµ(w) ∂µ z = H(w) z, ∂τ w = F (w, z),

A0 positive definite on B̂, tĀµ = Aµ.

They can be extended smoothly, as symmetric hyperbolic system, across
I into the domain where ρ < 0.

Standard results on solution to symmetric hyperbolic systems then im-
ply the existence of a smooth local solution in a neighbourhood of B̂ in
M̄ = {ρ ≥ 0, s ∈ SU(2), −f(ρ, s) < τ < f(ρ, s)}, which covers in particular
a neighbbourhood of I0 in I.

The cylinder I is thus generated by conformal geometry (as a limit of conformal
geodesics) and the field equations.

The details of the reduced equations give

Aρ = 0 on I.

This implies that the functions

up = ∂p
ρ u|I , p = 0, 1, 2, . . . ,

satisfy interior transport equations on I and are determined by data on I0.

Expanding up = up(τ, s) in a suitable function system on SU(2) gives
for the expansion coefficients u

′p a hierarchy of ODE’s along the curves
]− 1, 1[3 τ → (τ, s) ∈ I, which in principle can be solved explicitly.

The operators do not depend on the data, the right hand side of the
equation for up+1 depends quadratically on u0, . . . , up.

The calculation of Aµ(u) on I gives in particular

Aτ = diag(1 + τ, 2, 2, 2, 1− τ) on I.

The equations thus degenerate on I± where τ = ±1.

This degeneracy pinpoints the central difficulty of the subject.



A conjecture.

The expansion coefficients u
′p which have been calculated so far have in

general terms of the form

(
1− τ

2

)p−k+2 (1 + τ

2

)p+k−2
e+ f

τ∫
0

d σ

(1− σ)p−k+3(1 + σ)p+k−1


with constants of integration e, f which follow from the data at I0. The
up thus develop logarithmic singularities at I+. The non-linearity of the
equations will also imply terms of the form (1− τ)k logj(1− τ).

Inspection of the initial data for u
′p on I0 shows:

The logarithmic terms observed so far in general do not occur
in u

′p for p ≤ q∗ + 2 if and only if h satisfies the regularity condition

S
(
Di1, . . . , Diq Bjk(i)

)
= 0 for q = 0, 1, . . . , q∗,

where D denotes the h-connection, Bjk = 1/2 εj
ilDi Llk the h-Cotton ten-

sor, and S means: ‘take the symmetric trace-free part of . . . ’.

The conditions are conformally invariant.

Static solutions satisfy these conditions for all q∗.

There exists a large class of data on S3 which satisfy these conditions.

Conjecture: There exists an integer k∗ ≥ 0 such that for given k ≥ k∗ the
time evolution of an asymptotically euclidean, time-symmetric, conformally smooth
initial data set admits a conformal extension to null infinity of class Ck near space-
like infinity, if the regularity condition holds for a certain integer q∗ = q∗(k).

If this is true, the results on the hyperbolidal initial value problem will
imply the existence of a large class of asymptotically simple solutions
with a smooth conformal structure at null infinity.



The subconjecture.

The calculations seem to hint at an unexpected hidden property of Ein-
stein’s equations.

Subconjecture: If the regularity condition holds for a given q∗ ≥ 0, the functions
up, p ≤ q∗ + 2, extend smoothly to I±.

J. Kánnár, H.F., JMP 2000: verification for p ≤ 3.
J. Valiente Kroon, 2002: verification for p ≤ 4 for data which are con-
formally flat near i.

The analysis will provide an insight into the field equations which goes
beyond their conformal properties and their hyperbolicity. It will in-
volve their structure at all orders.

The calculations underlying the analysis provide interesting information
on the field and physically relevant quantities near space-like infinity.
Examples (assuming the correctnes of the conjecture):

J. Kánnár, H.F., JMP 2000: relate the present gauge to the Bondi gauge
and derive a formula for the Newman-Penrose constants

Gk =
∫

cut(J +)
2Ȳ2,k Ψ1

0 sinϑ dϑ dφ, k = −2, . . . , 2,

in terms of the initial data on S near i which is of the general form
mass × quadrupole moment - (dipole moment)2

and generalizes a formula derived by Newman and Penrose for static
solutions. This determines φabcd(i

+) in terms of initial data at I0 if the
solution admits a regular point i+.

J. Valiente Kroon, arXiv:gr-qc/0206050, June 2002: the calculation of
up for p ≤ 5 gives a quite unexpected direct relation between the Bondi
mass and the Newman-Penrose coefficients. For solutions arising from
data which are conformally flat near i the Bondi mass has in terms of a
Bondi retarded time u an expansion of the form

mB = mADM + (27/2
2∑

k=−2
|Gk|)u−7 +O(u−8) as u→ −∞.



Control on behaviour near J +.

Together these estimates give

∫
Nt

(
∑

q′+p′+|α|≤m

|Dq′,p′,α(∂p
ρφk)|2) dτ dρ dµ ≤

C
4∑

k=0

∫
S0

(
∑

q′+p′+|α|≤m

|Dq′,p′,α(∂p
ρφk)|2) dρ dµ,

k = 0, . . . , 4, 0 ≤ t < 1,

where C depends on p and m but not on t ∈ [0, 1[.

Sobolev embedding results imply

∂p
ρ φk ∈ Cj,λ(N1) for p ≥ j + 6, 0 < λ ≤ 1/2.

Writing J : f → J(f) =
∫ ρ
0 f(τ, r, s) d r we get by integration

φk =
p−1∑
p=0

1

p′ !
φp′

k ρ
p′

+ Jp(∂p
ρφk) on N1 for p ≥ j + 6,

resp.

φk −
p−1∑
p′=0

1

p′ !
φp′

k ρ
p′ ∈ Cj,λ(N1) for p ≥ j + 6,

where the φp′

k (τ, s) = ∂p′

ρ φk|I, which are obtained by integrating the trans-
port equations on I, are extended to N1 as ρ-independent functions.

Thus the overdeterminedness of the equations and the special form of the
differential operators, including the existence of the transport equations
on I, allow us to get complete control on φk near J +.

If the linearized regularity condition is satisfied for all q∗, the φp′

k extend
smoothly to I± = {ρ = 0, τ = ±1, s ∈ SU(2)}, and φk ∈ Cj,λ(N1) for all j.

Since the φp
k do in general develop logarithmic singularities, the same

can be expected of φk in the non-linear case.

Can the argument be extended to the non-linear case ?




