
The Penrose proposal, problems and results



Gravitational radiation ?

Einstein (1915) and textbooks discuss “gravitational radiation”

in terms of the linearized Einstein equations.

Pirani, Trautman, Sachs, Bondi, Newman, Penrose , . . .

(ca. 1957 - 1962) : Does there exists a concept of radiation

based on the non-linear theory ?

Maxwell theory: Perturbations travel inside or on the null

cone. Need to go far out for perturbations to develop into

‘waves’. Suggests:

Analyse the propagation of gravitational fields on outgoing null

hypersurfaces. Follow the propagation far out.

Where is ‘far out’, what does it look like, how do we identify

‘radiation’ if there is no background space ? How do we

analyse these questions ?

Specialize: Consider systems of stars, generating the per-

turbation, which are “far away” from other star systems

(“isolated system”).

Idealize: Assume that the field approaches in some sense the

Minkowski field as the affine parameter r →∞ along the

outgoing null geodesics.

Hope: Higher order quantities have a limit which can be

interpreted as representing ‘gravitational radiation’.



Gravitational Radiation !

GUESS: Ψ0 = O(r−5) in a uniform way as r →∞.

Formal expansion (in 1
r) type analysis gives:

Ψk = O(rk−5) as r →∞ (“Sachs peeling”).

limr→∞ r Ψ4 represents the “radiation field”.

The ‘Bondi-mass’ satisfies a ‘mass-loss formula’ (and is

positive). ‘Gravitational waves carry only positive energy’.

In these considerations the null cone structure and associated

structures (null hypersurfaces, null geodesics etc.) played a critical

role. As an object in itself the null cone structure is arkward to

handle. However, in terms of the equivalent ‘conformal structure’,

it can be conveniently analysed.

The critical role of the null cone structure in the studies

above was highlighted by the following observation:

Penrose (1963): “The asymptotic behaviour postulated resp.
derived above can be characterized geometrically solely in
terms of the asymptotic behaviour of the conformal structure”.

The more precise statement/proposal following this observation
raised some controversy.

The following discussion will largely be concerned with the
nature of the proposal, its problems, and the attempt to provide
a firm foundation for it.

But it will also show that the consequent abstract analysis of the
proposal has practical consequences.



Conformal extensions I.

Construct ‘conformal extensions’ for the simply connected,

conformally flat standard solutions to Ric[g̃] = λ g̃ by suitable

embeddings.

Target in all 3 cases: the ‘Einstein cosmos’ (M̄, g) with

M̄ = IR× S3, g = d s2 − dω2 = d s2 − (dχ2 + sin2 χ d σ2).

(Standard line elements: dω2 on S3, d σ2 on S2)

λ < 0, de Sitter space: M̃ = IR× S3, g̃ = dt2 − cosh2 t d ω2.

The map M̃ 3 (t, ϑ)
Φ→ (s = arctan et − π

4 , ϑ) ∈ M̃ ′ ⊂ M̄ defines a

diffeomorphism onto Φ(M̃) = M̃ ′ =]− π/4, π/4[×S3, in fact a

conformal embedding: holds Ω2 Φ−1∗g̃ = g, Ω = cos (2 s) > 0 on M̃ ′.

Observations:

Φ(M̃) has a C∞ boundary J ≡ ∂ (Φ(M̃)) = J + ∪ J − in M ,

Ω and g = Ω2 Φ−1∗g̃ extend smoothly to M = M̃ ′ ∪ J ,

Ω = 0, d Ω 6= 0 on J ± = {s = ±π/4} ∼ S3.

The ‘physical’ space-time is finite, the ‘conformal boundary at

null (and time-like) infinity’ at a finite location with respect

to the ‘conformal metric’ g.

Convenient analysis of asymptotic behaviour of Maxwell fields.

Convenient analysis of global causal space-time structure,
observe e.g. that J is space-like.



Conformal extensions II.

λ > 0, anti-de Sitter covering space:

M̃ = IR4, g̃ = cosh2 r dt2 − (dr2 + sinh2 r dσ2)).

The map M̃ 3 (t, r, ϑ)
Φ→ (s = t, χ = 2 arctan (er)− π

2 , ϑ) ∈ M̃ ′ ⊂ M̄ ,

defines a diffeomorphism onto Φ(M̃) = M̃ ′ = {χ < π/2}, in fact a

conformal embedding: holds Ω2 Φ−1∗g̃ = g, Ω = cos χ > 0 on M̃ ′

Observations:

Φ(M̃) has a C∞ boundary J in M ,

Ω and g = Ω2 Φ−1∗g̃ extend smoothly to M = M̃ ′ ∪ J ,

Ω = 0, d Ω 6= 0 on J = {χ = π/2} ∼ IR× S2.

The conformal space-time is finite in space-like directions, the conformal

boundary at null (and space-like) infinity is at spatially finite location

with respect to the conformal metric g.

The conformal boundary J is time-like.

∃ non-vanishing solutions of wave equations in AdS which vanish in a

neighbourhood of the slice {t = 0}.
6 ∃ Cauchy hypersurface in AdS (‘not globally hyperbolic’).



Conformal extensions III.

λ = 0: Minkowski space (M̃ = IR4, g̃ = dt2 − (dr2 + r2 d σ2)

The map Φ : M̃ → M̃ ′ = {|s± χ| < π, χ ≥ 0} ⊂ M̄ with inverse

Φ−1 : t =
sin s

cos s + cos χ
, r =

sin χ

cos s + cos χ
,

defines a diffeomorphism of M̃ onto M̃ ′, in fact a conformal embedding:

Ω2 Φ−1∗g̃ = g, Ω = cos s + cos χ > 0 on M̃ ′.

Observations:

‘Conformal boundary’: J ≡ ∂Φ(M̃) = J − ∪ J + ∪ {i−, i0, i+} with:

‘future (past) null infinity’ J ± = {τ ± χ = ±π, 0 < χ < π},
Ω = 0, d Ω 6= 0 on J ± ∼ IR× S2, null hypersurfaces,

‘physical’ null geodesics acquire endpoints on J ±,

‘future (past) time-like infinity’ i± = {χ = 0, τ = ±π},
endpoint of ‘physical’ time-like geodesics in the future (past).

‘space-like infinity’ i0 = {χ = π, τ = 0},
endpoint of ‘physical’ space-like geodesics.

Ω = 0, d Ω = 0, Hess(Ω) ∼ g at i±, i0.

For detailed investigations near these points sometimes the inversion
xµ → xµ

xν xν is useful.

In all three cases:

the conformal metric g, the conformal factor Ω, and derived fields define
solutions to the metric conformal field equations which extend smoothly,
as solutions, to the complete Einstein cosmos.



The Penrose proposal I.

Our observations can be summarized in the generalizing
definition

Asymptotic simplicity: A smooth space-time (M̃, g̃) is called
asymptotically simple if there exists a smooth oriented, time-oriented,
causal space-time (M, g) and on M a smooth function Ω such that:

(i) M is a manifold with boundary J ,

(ii) Ω > 0 on M \ J and Ω = 0, d Ω 6= 0 on J ,

(iii) there exists an embedding Φ of M̃ onto Φ(M̃) = M \ J such that

Ω2 Φ−1∗g̃ = g,

(iv) each null geodesics of (M̃, g̃) acquires two distinct endpoints on J .

Purely differential geometric restriction on global structure.

Implies that all null geodesics are complete.

Thus J thus represents boundary at null infinity, generated by

ideal endpoints of null geodesics.

(ii) redundently implies that J is a smooth hypersurface,

(ii) specifies together with (iii) how precisely Φ−1∗g̃ is to

be rescaled to obtain a smooth, non-degenerate metric.

The definition was motivated by the following novel idea

Penrose (1963, 1965) : Far fields of isolated systems behave like

asymptotically simple space-times in the sense that they can be

smoothly extended to null infinity, as indicated above, after suitable

conformal rescalings.

(vagueness of formulation the lecturer’s . . . )



The Penrose proposal II.

The definition should be applied with understanding, it may

require modifications: cf. Schwarzschild-Kruskal solution.

We shall in the following not be worried to much with the

completeness condition (iv).

The idea brings out the key geometrical structure in previous

investigations. It is independent of any distinguished coordinate

systems (like ‘Bondi coordinates’).

It is of practical interest for analysing space-times:

complicated limits←→ local differential geometry

It is of interest for analysing physical concepts:

approximations in (M̃, g̃)←→ fields near J

(Bondi energy momentum, radiation field, . . .)

It is of interest for calculating complete space-times
numerically by using the conformal field equations

artificial boundaries←→ finite conformal spacetime

Field equations + asymptotic simplicity have strong implications:

If R̃µν = λ g̃µν near J then

gµν∇µ Ω∇ν Ω = −1

3
λ, ∇µ Ω Cµ

νλρ = 0 on J .

The sign of the cosmological constant (∼ term of zeroth order)

determines the causal nature of the conformal boundary.

If λ 6= 0, then Cµ
νλρ = 0 on J .



The Penrose proposal III.

Central and critical: Asymptotic simplicity is in competition

with the implications of the quasi-linear, gauge hyperbolic field

equations.

Proposal suggests an extremely sharp characterization of the

fall-off behaviour of the gravitational fields of isolated systems

No further strengthening possible without implying essential

restrictions.

However: is it going too far already ? What are the criteria ?

The question is not whether C∞ should be replaced by Ck with

some large k but whether there exist extensions of class Ck with

k large ‘enough’ such that e.g. the curvature decays to zero at

null infinity.

Penrose (1965) obtains the following remarkable result:

− (M̃, g̃) is smooth, solves R̃µν = 0, and admits a conformal

extension (M, g, Ω) with M of class C4, g and Ω of class C3,

− the Weyl spinor Ψabcd satisfies Ω∇ee′∇a
a′ Ψabcd → 0 at J +,

− the set of null generators of J + is diffeomorphic to S2

implies Ψabcd → 0 on J +.

Thus, if M is of class C5, g and Ω are of class C4 the curvature decays

to zero at null infinity.

Is the class of solutions to Einstein’s equations which admit such

extensions ‘sufficiently’ rich ?



Construction of extensions I.

How to decide whether a solution (M̃, g̃) is asymptotically simple ?

In general:
NOT by using the Einstein cosmos or the inversion map.

In a systematic discussion the extension (differential structure, null

cone field) must be contructed in terms of intrinsic structures of (M̃, g̃).

Traditional method: employs null geodesics, null hypersurfaces, . . ..

Schwarzschild line element r > 2 m

g̃ =

(
1− 2 m

r

)
d t2 −

(
1− 2 m

r

)−1
d r2 − r2 d σ2

in retarded null coordinate w = t− (r + 2 m log(r − 2 m))

g̃ =

(
1− 2 m

r

)
dw2 + 2 dw d r − r2dσ2.

With ρ = r−1

Ω = ρ and g = Ω2 g̃ = (1− 2 m ρ) ρ2 dw2 − 2 dw d ρ− ρ2dσ2.

have smooth extensions to J + ≡ {ρ = 0}.

Alternative method:

de Sitter space: suitable conformal Gauss gauge based on S̃ = {t = 0}
gives coordinate transformation τ = 2 tanh ( t

2) and conformal factor

Θ = 1− τ2

4 .

Θ and g = Θ2 g̃ = d τ 2 − (1 +
τ 2

4
)2 dω2, given on ]− 2, 2[,

extend smoothly to the sets J ± ≡ {τ = ±2}.



Construction of extensions II.

Minkowski space:

suitable conformal Gauss gauge based on S̃ = {t = 0} gives a coordinate

transformation

t =
τ
2

cos2 χ
2 − (τ

2 sin χ
2 )2 , r =

sin2 χ
2 (1 + (τ

2)
2)

cos2 χ
2 − (τ

2 sin χ
2 )2 ,

and a conformal factor

Θ = 2 (cos2 χ

2
− (

τ

2
sin

χ

2
)2)

on the manifold

M̃ = {0 < χ < π, ϑ ∈ S2, τ = ±
√√√√1 + cos χ

1− cos χ
}.

The fields

Θ and g = Θ2 g̃ = Θ2 (dt2 − dr2 − r2 dσ2) = ω2 (
1

ω2 dτ 2 − dχ2 − sin2 χ dσ2),

with ω = 1 + (τ
2)

2, extend smoothly to

J ± = {0 < χ < π, ϑ ∈ S2, τ = ±
√√√√1 + cos χ

1− cos χ
}.

This extension, for which the 1-form b satisfies < b, ẋ > = 0 on {t = 0},
does not cover i± (conformally invariant statement).

Extensions covering either i+ or i− can be constructed by replacing

the initial data b by b + α ẋ with a suitable function α on {t = 0}.

What happens in the presence of ‘strong’ curvature ?

Will the curvature necessarily induce the congruence of conformal

geodesics to develop caustics ?

Congruences of conformal geodesics can develop caustics which are

more severe than those developed by congruences of metric geodesics.



Construction of solutions including their extensions

‘There exist smooth (analytic) conformal Gauss systems which cover

the complete Schwarzschild-Kruskal space-time and which provide

smooth (analytic) conformal extensions to J ±1,2’.

The underlying congruence of conformal geodesics can be calculated
in terms of elliptic integrals.

The regularity of the congruence is shown by deriving and analysing a
conformal analogue of the Jacobi equation, which reads in terms of the
vacuum-adapted conformal geodesic equations

∇̃X ∇̃X Z = C (X, Z) X + B̂],

∇̃X B̂ = −b̂ C (X, Z) + α ∇̃X Z[ + γ X[,

here α, γ = const. are along the curves and the tangent vector, the devi-
ation vector field, and the deviation 1-form are denoted by

X = ∂τ̄ x̄, Z = ∂λ x̄, B̂ = ∇̃Z b̂.

These observations above suggest:

a systematic way of constructing extensions,

a systematic method of constructing solutions including their extensions:

In the three cases above the resulting conformal space-times represent
smooth solutions to the general conformal field equations.

Even in the Schwarzschild-Kruskal case the reduced equations reduce
to systems or ODE’s. On a Schwarzschild part r > 2 m the data can be
arranged such that the conformal Gauss systems (including their exten-
sions beyond J +) approach a conformal Gauss system on the (confor-
mally extended) Minkowski space as m→ 0.



First issue: existence ‘locally near J ’.

R̃µν = 0 (null infinity light-like):

‘Asymptoytic characteristic initial value problem’: data hypersurfaces
N , J +

∗ with N ∼ outgoing null hypersurface, Σ = N ∩ J + space-like
2-surface, J +

∗ ∼ part of J + in the past of Σ (‘the original problem’):

J. Kannar, Proc. Roy Soc. 1996:

For smooth data ∃1 local solution near Σ, i.e. all solutions for which di
jkl

has a smooth limit on J +
∗ (and on N ) can be characterized.

The freedom to prescribe null data on N and J +
∗ the same as in the

characteristic initial value problem for Einstein’s equations.

The null data on J +: outgoing radiation field.

R̃µν = λ g̃µν, de Sitter-type case λ < 0, compact time slices (null infinity
space-like):

For smooth data ∃1 local solution near J −, i.e. all solutions for which
di

jkl has a smooth limit on J − can be characterized.

With the exception of the mean intrinsic curvature the freedom to spec-
ify data on J − the same as in a standard Cauchy problem.

Peculiar feature: the Hamiltonian contraint becomes trivial on J −.

R̃µν = λ g̃µν, anti-de Sitter-type case λ > 0, (null infinity time-like):

All solutions for which di
jkl has a smooth limit on J can (locally) be char-

acterized in terms of an initial boundary value problem with (standard)
initial data on a space-like slice S and boundary data (3-dim Lorentzian
conformal structure) on J : ∃1 local solution near S containing a neigh-
bourhood of S ∩ J .

Problem more natural than the standard initial boundary value problem
for Einstein’s vacuum field equations (cf. H.F., G. Nagy, CMP, 1999).

∃ smooth physical solutions with non-smooth boundary data ??



Second issue: Smooth evolution into J +.

Properties of di
jkl should be deduced, not postulated. We need to control

the behaviour of the solutions as they evolve towards null infinity.

Model case:

R̃µν = λ g̃µν, de Sitter-type case λ < 0, time slices ∼ S3:

‘The asymptotic structure of de Sitter space is non-linearly stable
under sufficiently small finite perturbations’.

In our conformal Gauss gauge de Sitter space extends as a solution to
the general conformal field equations smoothly into the range −a ≤ τ ≤ a

for given a > 2. The conformal factor becomes negative on the boundary
of that domain.

Use the stability properties of the symmetric hyperbolic reduced
equations implied by the general conformal field equations to control
the perturbed solutions.

In this case null infinity admits a smooth conformal structure and a
smooth limit of di

jkl as a consequence of the evolution process and the
assumptions on the initial data.

An analogous stability result in the Minkowski-type case is not available.
In fact, a result of this simplicity cannot be obtained.


