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15¢ Level Problem
Bound local geometry in terms of
IR|1 < K. (5.1)
Usual norm of curvature tensor
IR|? = Ry;uR“* not > 0. (5.2)
For Ricci-flat Lorentz metrics, 2 scalar invariants of full curvature
IR|? = R;juRY" and < R, *R >= Ry (*xR"").
Both can vanish on non-flat space-times: e.g.

plane-fronted gravitational waves
g = —2dudv + 2(dz* + dy?®) — 2h(u, z, y)du?,
A yh =0, h arbitrary in u.

Class of such highly non-compact = no local control of metric in
any coord. system, under bounds (5.2).
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Size conditions. Let {2 = domain in a smooth Lorentz manifold
(M, g), with smooth time function 7" = 9/0t. Let S = ¢t~1(0) and
suppose the 1-cylinder

Cy = B,(1) x [-1,1] cC Q.
Let D = ImT|¢, CC TTQ.

Theorem 5.1 Suppose () satisfies the size conditions and 3 con-
stants K < 00, v, > 0 s.t.

R|r < K, wvol,By(1) > v,. (5.4)

Then dr, > 0, R, < oo, depending only on K,v, and D, and
coord. charts on the r,-cylinder

Cr, = By(1o) X [re, 1] C Ch,

s.t. on Cy,,
18asllL2r < Ro. (5.5)
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214 evel Problem
Replace |R|7 bound by bound on |Ricg|.

For vacuum space-times: remove bound on |R|p.

Seek analogues of Convergence I, II results:
bound on Ric, inj/1-cross = L*P control on g

Two parts to proof: geometric/analytic
geometric

e Splitting theorem
Have direct analogue.

Lorentzian Splitting Theorem (Eschenburg, Galloway, Newman)
(M, g) time-like geodesically complete or globally hyperbolic vac-
uum space-time which contains a time-like line, then (M, g) is flat.

Can define Lorentzian 1-cross: |T]* = —1
Croi(z,T) = sup{t : ¥ = max. geod. on[—t,t],v(0) = z,~'(0) = T},
Cro(Q,T) = inf Croy(x,T).

e
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analytic
Missing step - No regularity boost from hyperbolic PDE.

However, smoothness of initial data preserved until hit boundary of
maximal development.

Let S C (M, g) = space-like hypersurface. Define H*® harmonic
radius ps(z), x € S, s > 2.5, (large) as before: largest radius s.t.

o) / Wafsc
z\Ps\T

Suppose S = hypersurface with smooth, (C), initial data. Let
Sy = hypersurface obtained from vacuum evolution. Then (Choquet-
Bruhat)

min ps(x;) > ¢1 = min psiq(z;) > o9, (5.6)
21 ESy T1ESY

where ¢y depends on ¢; and the initial data set.

We raise the following:

Regularity Problem. Can the estimate (5.6) be improved to
an estimate

min ps-i—l(xt) > co min ,03<55't), (57)
T €S} T1E€St

where ¢y depends only on the initial data set?

The important point of (5.7) over (5.6) is that the estimate (5.7)
is scale-invariant.

If (5.7) holds, it serves as an analogue of the regularity boost. Can
then imitate the proofs of Riemannian convergence results to obtain
Lorentzian convergence.

Would have numerous interesting applications.
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Next, drop any assumption on the 1-cross of (M, g): maintain
only a lower bound on the volumes of geodesic balls on space-like
hypersurfaces.

This leads to issues of singularity formation and the structure of
the boundary of the vacuum space-time; little understood mathe-
matically.

Sandwich Problem: Version 1.
Let (M, g;) be a sequence of vacuum space-times, and let 3}, 2
be two compact Cauchy surfaces in M, with X7 > %! and with

1 < distg(z,%;) <10, Vx € 7.

Suppose the Cauchy data (gf : Kg ), j = 1,2 on each Cauchy surface
are uniformly bounded in H?, for some fixed s > 2.5, possibly large.
Hence the data (gf : Kg ) converge, in a subsequence and weakly in
H?, to limit H® Cauchy data g/, K7 on Y.

Do the vacuum space-times A;(1,2) C (M, g;) between X! and 2
converge, weakly in H?®, to a limit space time,
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Application. Understand limits of the AS vacuum perturbations
of deSitter, (Friedrich).

The sandwich problem asks: suppose one has control on the space-
time near past and future space-like infinity Z=, does it follow that
one has control in between?

Sandwich Problem: Version II. (M, g) smooth vacuum
space-time, !, 32 smooth compact space-like hypersurfaces,

Yl n2,

Does the maximal globally hyperbolic development from X! con-
tain ¥.27
Can (M, g) have an “invisible” singularity in between?
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§6. Future Asymptotics and Geometrization
of 3-Manifolds

Issue: Understand future asymptotics of vacuum cosmological
space-times (M, g).
(M, g) contains compact CMC Cauchy surface 3,

o(%) < 0. (6.1)
3 foliation F by CMC Cauchy surfaces >.; ~ 3.,
T = mean curvature € (—o0,0). (6.2)

7 1 to future — expanding direction. Let Mz = foliated region in
M.

Suppose (M, g) geodesically complete to future of X and, to future
of X,
M = M.

Strong assumptions, but necessary to study smooth asymptotics.
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Induced metrics g, = g|y = curve of Riemannian metrics on fixed
3-manifold Y. As 7 — 0, typically

voly, Y — 00, gr becomes flat

— due to expansion.
Not so interesting. To study asymptotics, rescale by distance tp
fixed base point — “blow-down”.
For z > %I, let
t(x) = distg(x,)

and
tr = tmae(T) = max{t(z) : x € ¥, }. (6.3)
Thus study the asymptotic behavior of the metrics
gr = t;2g7'7 (64)

on Y;. For rescaled space-time (M, g, ), distance of (X;, g;) to “big
bang” — 1, as 7 — 0.
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Definition 6.1 > a closed, oriented, connected 3-manifold, non-
positive Yamabe type. A weak geometrization of X is a decomposi-
tion

Y=HUG: (6.5)

e [ = finite collection of complete, connected hyperbolic manifolds,

of finite volume C ..

e (G = finite collection of connected graph manifolds C ..

e Union along a finite collection of tori 7 = UT; = 0H = 0G C X.
A strong geometrization of X is a weak geometrization s.t.

7T1(T2) — wl(Z), \V/TZ cT.

T = ) = weak = strong.
3 sequences of metrics g; which limit on a geometrization of ..
e g, — hyperbolic metric on H
e g, — collapse on G
match behaviors far down hyperbolic cusps.
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Curvature assumption. Assume 4C' < oo s.t. for z > X,
IR|(z) +t(z)|VR|(z) < C -t *(z). (6.6)

Curvature norm |R| = |R|y, T = unit normal to the foliation ;.
Bound (6.6) scale-invariant.

e holds for Bianchi space-times

e Conjecture: holds for perturbations of Bianchi space-times

e probably holds for Gowdy

No known cosmological vacuum space-times, geodesically com-
plete to future, where it fails.

Theorem 6.2 Let (M, g) be a cosmological space-time of non-
positive Yamabe type. Suppose that the curvature assumption
(6.6) holds, and that Mz = M.

Then (M, g) is future geodesically complete and, for any se-
quence 7; — 0, the slices (¥, g-,) have a subsequence converging
to a weak geometrization of Y.

Ideas in Proof: Curve of metrics (X, g,,), blown-down.

e 1> bound on |R|y = L* bound on intrinsic and extrinsic curva-
ture of slices (3, g,). Proof similar to Theorem 5.1.
e Can apply Cheeger-Gromov theory: subsequences either converge,
collapse or form cusps.

Collapse/cusps = graph manifold structure.

Remains to show that convergence/thick part converges always to
hyperbolic manifolds.
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Main ingredient for convergence: Volume monotonicity:

voly 2.7
E

+ (6.7)

Analogous to monotonicity of reduced Hamiltonian (Fischer-Moncrief).

This monotonicity follows from simple analysis of the Raychaud-
huri equation, (as in Penrose-Hawking singularity theorems), to-
gether with a suitable maximum principle.

Further, the ratio in (6.7) is constant on some interval |7y, 75| iff the
annular region A(7,72) = 7 (71, 72) = annulus in a flat Lorentzian
cone

g, = —dt’ + t°g_1,

where g_; is a hyperbolic metric.
Again, the ratio in (6.7) is scale invariant, and so

voly >;
t3

T

= volg >y

Non-collapse means this volume is bounded below. Hence, it con-
verges to a non-zero limit, so have equality in limit, so space-time
limit is flat Lorentz cone.
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