
Applications

• Re: the null splitting theorem: If M is null geodesi-
cally complete, obeys the null energy condition, and
contains a null line η then η is contained a smooth
closed achronal totally geodesic null hypersurface.

• Re: the rigidity philosophy.

• Re: the proof. Use the max prin for C0 null hyper-
surfaces to show that

S+ = ∂I+(η) and S− = ∂I−(η)

agree, and form a smooth totally geodesic null hy-
persurface.

• Re: the completeness assumption. Proof only re-
quires null generators of S+ to be past complete,
and null generators of S− to be future complete.

• NEC and the Einstein equations: If the Einstein
equations with cosmological constant hold,

Rij −
1

2
Rgij + Λgij = 8πTij

then

Ric (X,X) = 8πTijX
iXj

for all null vectors X.

Hence the NEC is insensitive to the sign of the
cosmological constant. In particular in the vacuum
case, Tij = 0, the NEC is always satisfied, regardless
of the sign of Λ.
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Consider now some global results for solutions to the
Einstein equations with prescribed asymptotics.

Use Penrose’s notion of conformal infinity to treat the
asymptotics.

Based on the conformal imbeddings of Minkowski space,
de Sitter space and anti-de Sitter space into the Einstein
static universe:

Minkowki de Sitter anti-de Sitter

We are going to focus primarily on spacetimes which are
asymptotically de Sitter, i.e., for which the conformal
boundary I is spacelike.
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Def. (M, g) is a spacetime of de Sitter type provided
there exists a smooth spacetime-with-boundary (M̃, g̃)
and a smooth function Ω on M̃ such that

• M is the interior of M̃ ; hence M̃ = M ∪ I, I = ∂M̃ .

• g̃ = Ω2g, where (i) Ω > 0 on M , and (ii) Ω = 0,
dΩ 6= 0 along I.

• I is spacelike.

I decomposes into two disjoint sets,

I = I+ ∪ I−

where, I+ ⊂ I+(M, M̃) and I− ⊂ I−(M, M̃).

Def. A spacetime M of de Sitter type is asymptotically
simple provided each inextendible null geodesic in M has
a future end point on I+ and a past end point on I−.

Ex. De Sitter space, which can be expressed in global
coordinates as,

M = R× Sn, ds2 = −dt2 + cosh2 t dΩ2

Ex. Schwarzschild-de Sitter space (dim 4).

ds2 = −(1− 2m

r
− Λ

3
r2) dt2 + (1− 2m

r
− Λ

3
r2)−1dr2 + r2dω2 ,

where Λ > 0 (and 9Λm2 < 1).
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Penrose diagram:

SS-DeS is a spacetime of de Sitter type, but is not
asymptotically simple.

Ex. FRW spacetime,

M = R×Σ , ds2 = −dt2 + a2(t)dσ2

which is a solution to the Einstein equations with perfect
fluid source and Λ > 0.

Starts from a big bang but behaves like de Sitter to the
far future.

For such models, I = I+, i.e., there is a future conformal
infinity, but no past conformal infinity. Shall also refer
to such spacetimes as being of de Sitter type.
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Asymptotic simplicity can be related to the causal struc-
ture of of spacetime.

Prop. Let M be a spacetime of de Sitter type with
future conformal infinity I+.

(1) If M is future asymptotically simple then M is glob-
ally hyperbolic.

(2) If M is globally hyperbolic and I+ is compact then
M is future asymptotically simple.

In either case, the Cauchy surfaces of M are homeomor-
phic to I+.

Comments on proof.

(1): Extend M ∪ I+ a little beyond I+ to obtain a
spacetime without boundary Q such that I+ is a future
Cauchy surface in Q:

i.e. such that D+(I+, Q) = J+(I+, Q) ⇐⇒ H+(I+, Q) = ∅.

We claim H−(I+, Q) = ∅, as well, and hence I+ is a
Cauchy surface for Q.
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Suppose H−(I+, Q) 6= ∅:

By asymptotic simplicity, null generators of H−(I+, Q)
must meet I+ →←.

Thus I+ is Cauchy for Q, and Q is globally hyperbolic.
One can then construct a Cauchy surface for Q lying
entirely in M . This is easily seen to be a Cauchy surface
for M , as well, and hence M is globally hyperbolic.

Finally, since all Cauchy surfaces are homeomorphic, the
Cauchy surfaces of M are homeomorphic to I+.

(2): Similar arguments involved. Uses the basic fact:

Prop. If S is a compact achronal hypersurface in a glob-
ally hyperbolic spacetime M then S must be a Cauchy
surface for M .
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Uniqueness results for spacetimes of de Sitter type.

Every null geodesic in de Sitter space is a null line (in-
extendible achronal null geodesic).

This is related to the fact that the observer horizon
∂I−(γ) of every observer (future inextendible timelike
curve) γ is eternal, i.e. extends from I+ to I−.

Theorem. Suppose M4 is an asymptotically simple
spacetime of de Sitter type satisying the vacuum Ein-
stein equation,

Ric = λg

with λ > 0. If M contains a null line then M is isometric
to de Sitter space.

Comment: This can be interpreted in terms of the initial
value problem, due to Friedrich’s results on the nonlinear
stability of asymptotic simplicity, in the case Λ > 0.

• In general, a small perturbation of the initial data
in de Sitter space destroys all the null lines, i.e.,

• in the perturbed spacetime, there are no eternal
observer horizons.
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Proof. The main step is to show M has constant cur-
vature.

η is contained in a smooth totally geodesic null hyper-
surface S. Focus on situation near p:

S = ∂I+(η,M) = ∂I+(p, M̃) ∩M

Thus, Np = S ∪ {p} is a smooth null cone in M̃ . Since
the shear σ is a conformal invariant, the null generators
of Np have vanishing shear.

The trace free part of the Ricatti equation then implies,

C̃aKbK = 0 (⇐⇒ ψ̃0 = 0)
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By an argument of Friedrich ’86,

Ci
jkl = 0 on D+(Np, M̃) ∩M

Argument makes use of the conformal field equations,
specifically,

∇̃idijkl = 0, dijkl = Ω−1Ci
jkl

Time-dually, Ci
jkl vanishes on D−(Nq, M̃)∩M , and hence

on all of M .

Thus M has constant curvature. It can be further shown
that M is geodesically complete and simply conncted,
and so M is isometric to de Sitter space.

Comments.

(1) The assumption of asymptotic simplicity cannot be
removed, cf., SS-deS space. But it appears it can be
substantially weakened.

¿Theorem? Suppose M is a maximally globally hyper-
bolic spacetime of de Sitter type satisying the vacuum
Einstein equation,

Ric = λg

with λ > 0. If M contains a null line with end points on
I then M is isometric to de Sitter space.
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(2) Analogous result holds for Minkowski space.

Theorem. Suppose M4 is an asymptotically simple
spacetime satisying the vacuum Einstein equation,

Ric = 0 .

If M contains a null line then M is isometric to Minkowski
space.

Remarks:

• Due to Corvino-Chrusćiel-Delay, this result is not
vacuous!

• Asymptotic simplicity assumption is not so easily
weakened in this case.

• This result should continue to hold in the nonva-
cuum case for certain fields (matter fields, EM,
Yang-Mills).
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Results on the topology of spacetimes of de Sitter type.

Q. What are the allowable spatial topologies within the
class of asymptotically simple and de Sitter solutions of
the Einstein equations?

Theorem (Andersson, G.) Let Mn+1, n ≥ 2, be a space-
time of de Sitter type with past and future conformal
boundaries I±. Assume that M is asymptotically simple
either to the past or future. Assume further that M
obeys the null energy condition.

Then M is globally hyperbolic, and the Cauchy surfaces
for M are compact with finite fundamental group.

Comments.

(1) Thus, in 3 + 1, the Cauchy surfaces are homotopy
3-spheres, perhaps with identifications.

(2) In particular, the Cauchy surfaces cannot have topol-
ogy S2×S1. Or, put another way if the Cauchy sur-
face topology is S2×S1, then M cannot be asymp-
totically simple, either to the future or the past; cf.,
SS-deS.

Proof. We show the Cauchy surfaces of M are compact.

Can extend M a little beyond I± to obtain a spacetime
P ⊃ M̃ such that any Cauchy surface for M is a Cauchy
surface for P .

Suffices to show the Cauchy surfaces of P are compact.
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Fix p ∈ I−, and consider ∂I+(p, P ):

If ∂I+(p, P ) is compact then ∂I+(p, P ) is a compact CS
for P and we are done.

If ∂I+(p, P ) is noncompact then can construct null geodesic
generator γ ⊂ ∂I+(p, P ) which is future inextendible
in P .

By future asymptotic simplicity, γ meets I+ at q, say.
γ0, the portion of γ from p to q is a null line in M .

By the null splitting theorem, γ0 is contained in a totally
geodesic null hypersurface S. By previous arguments,
N = S ∪ {p, q} is a compact achronal hypersurface in P :

Hence, N is a compact Cauchy surface for P . Thus the
Cauchy surfaces for M are compact.
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We consider a related result which is an application of
the Penrose singularity theorem,

Theorem (Penrose). Let M be a globally hyperbolic
satisfying the null energy condition. Then the following
conditions cannot all hold.
• The Cauchy surfaces of M are non-compact.
• M contains a past-trapped surface.
• M is past null geodesically complete.

Theorem (Andersson, G.) Suppose Mn+1, 2 ≤ n ≤ 7, is
a globally hyperbolic spacetime of de Sitter type, with
future conformal boundary I+, which is compact and ori-
entable. Suppose further that M obeys the null energy
condition.

If the Cauchy surfaces of M have positive first Betti
number, b1 > 0, then M is past null geodesically incom-
plete.

Discussion of proof.

In the far future, can choose a CS N for M , with sec-
ond fundamental form which is positive definite wrt the
future pointing normal.
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Now, b1(N) > 0 ⇐⇒ Hn−1(N,Z) 6= 0.

Minimizing area in homology class, obtain a homologi-
cally nontrivial smooth compact orientable minimal hy-
persurface surface W ⊂ N :

The preimage of W in the covering spacetime consists of
infinitely many copies of W each past trapped, contained
in a noncompact CS. Thus M ′, and hence M must be
past null geodesically complete.

Comment: Further results on the topology of space-
times of de Sitter type may be found in: Andersson and
G., hep-th/0202161.
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