
C0 Null hypersurfaces

In GR, the null hypersurfaces of interest, e.g. horizons
of various sorts, are not smooth in general.

Such hypersurfaces often arise as the null portions of
achronal boundaries, i.e., boundaries of pasts/futures,

A ⊂M, ∂I±(A) = achronal boundary.

• Black hole event horizon: H = ∂I−(I+) ∩M

• Observer horizons: ∂I−(γ)

• Cauchy horizons: H+(S) = ∂I−(D+(S)) ∩ J+(S)
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Achronal boundaries.

Def. An achronal boundary is a set of the form ∂I+(A)
(or ∂I−(A)).

Prop. An achronal boundary ∂I+(A), if nonempty, is a
closed achronal C0 hypersurface in M .

Discussion of proof:

Lemma. If p ∈ ∂I+(A) then I+(p) ⊂ I+(A), and simi-

larly, I−(p) ⊂M \ I+(A).

Pf: q ∈ I+(p) ⇒ p ∈ I−(q). Since I−(q) is a nbd of p,
and p is on the boundary of I+(A), I−(q) ∩ I+(A) 6= ∅,
and hence q ∈ I+(A).

Since I+(A) does not meet ∂I+(A), it follows from the
lemma that ∂I+(A) is achronal.

It also follows from the lemma that ∂I+(A) is edgeless.
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Def. The edge of a closed achronal set S ⊂ M is the
set of points p ∈ S such that every neighborhood U of p,
contains a timelike curve from I−(p, U) to I+(p, U) that
does not meet S.

Prop. A closed achronal edgeless set S ⊂ M is a C0

hypersurface in M .

As a corollary, achronal boundaries are C0 hypersurfaces.

Prop. Let A ⊂M be closed. Then each p ∈ ∂I+(A) \A
lies on a null geodesic contained in ∂I+(A), which either
has a past end point on A, or else is past inextendible
in M .
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Proof.

Choose {pn} ⊂ I+(A) such that pn → p, and let γn be
a past directed timelike curve from pn to A. By Ascoli,
and passing to a subsequence, {γn} converges to a past
directed causal curve γ ⊂ ∂I+(A) from p. Since γ is
both causal and achronal, it must be a null geodesic.

Each γn is past inextendible in M \ A, and hence so is
γ. Thus γ either has a past end point on A or is past
inextendible in M .
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C0 null hypersurfaces.

Thus sets of the form

S = ∂I+(A) \A, resp., S = ∂I−(A) \A ,
with A closed, are achronal C0 hypersurfaces, ruled by
null geodesics which are past, resp. future, inextendible
in S.

Def. A C0 future null hypersurface is a locally achronal
C0 hypersurface S, which is ruled by null geodesics that
are future inextendible in S.

Ex. S = ∂I−(A) \A, A ⊂M closed.

Ex. M = Minkowski 3-space, A = two disjoint spacelike
disks in t = 0. Then S = ∂I−(A) \ A is a C0 future null
hypersurface in M

A C0 past null hypersurface is defined time-dually: it is
ruled by null geodesics that are past inextendible within
the hypersurface.
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Mean curvature inequalities for C0 null hypersurfaces.

C0 null hypersurfaces do not have null mean curvature
in the classical sense, but may obey null mean curvature
inequalities in a support sense.

Def. Let S be a C0 future null hypersurface. S has
null mean curvature θ ≥ 0 in the support sense provided
∀p ∈ S, and ∀ε > 0, there exists a smooth (C2) null
hypersurface Wp,ε such that
• Wp,ε is a past support hypersurface for S at p.
• θp,ε(p) ≥ −ε .

(For this definition, it is assumed that the null vectors
have been uniformly scaled, e.g., have unit length wrt a
background Riemannian metric.)

Note: If S is smooth then θ ≥ 0 in the usual sense.

Ex. M = Minkowski space, S = ∂I+(p). S is a C0 future
null hypersurface having θ ≥ 0 in the support sense.
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If S is a C0 past null hypersurface, one defines θ ≤ 0
in a support sense in an analogous manner in terms of
future support hypersurfaces.

Prop. Let S be a C0 future null hypersurface in M .
Suppose,

• M obeys the null energy condition.

• The null generators of S are future geodesically
complete.

Then θ ≥ 0 in the support sense.

Proof: WLOG, may assume S is achronal. Given p ∈ S,
let η : [0,∞) → S ⊂ M , s → η(s), be a null generator of
S from p = η(0).

For any r > 0, consider small pencil of past directed null
geodesics from η(r). Forms a smooth (caustic free)
null hypersurface Wp,r containing η|[0,r], which is a lower
support hypersurface for S at p.

Let θ = θ(s), 0 ≤ s ≤ r, be the null mean curvature of
Wp,r along η|[0,r].
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By Raychaudhuri and NEC we have,

dθ

ds
≤ − 1

n− 1
θ2,

Together with θ(r) = −∞ gives,

θ(0) ≥ −n− 1

r

Maximum principle for C0 null hypersurfaces.

Theorem. Suppose

• S1 is a C0 future null hypersurface, and S2 is a C0

past null hypersurface in M .

• S1 , S2 meet at p ∈ M , with S2 to the future side
of S1 near p.

• θ2 ≤ 0 ≤ θ1 in the support sense.

Then S1 and S2 coincide near p, and form a smooth null
hypersurface with θ = 0.
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Comments on the proof:

Although there are some technical issues, the proof pro-
ceeds essentially as in the smooth case.

Can show p is an interior point of a null generator com-
mon to both S1 and S2 near p. As before, intersect S1

and S2 with a timelike hypersurface Q through p, trans-
verse to this generator.

Σ1 and Σ2 will be C0 spacelike hypersurfaces in Q, with
Σ2 to the future of Σ1 near p.

Can express Σ1 and Σ2 as graphs over a fixed hypersur-
face in Q,

Σ1 = graph (u1) , Σ2 = graph (u2)

One has:
• u1 ≤ u2, and u1(p) = u2(p).
• θ(u2) ≤ 0 ≤ θ(u1) in the support sense.

Need a suitable weak version of the strong maximum
principle: Andersson, Howard, G. (’98, Comm. Pure
Appl. Math.)

For further details, see: G., Ann. Henri Poincaré 1
(2000) 543.
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The Null Splitting Theorem

Lines in Spacetimes.

A timelike line is an inextendible timelike
geodesic each segment of which is maximal.

The standard Lorentzian splitting theorem describes the
rigidity of spacetimes containing a timelike line:

Theorem. Suppose

• M is timelike geodesically complete.

• M obeys the strong energy condition, Ric(X,X) ≥
0, for timelike X.

• M has a timelike line.

Then M splits isometrically along the line, i.e., (M, g) is
isometric to (R×V,−dt2⊕h), where (V, h) is a complete
Riemannian manifold.

Comment:

• Precise analogue of the Cheeger-Gromoll splitting
theorem of Riemannian geometry.

• Recall, posed as a problem by Yau in the early 80’s
as an approach to removing the genericity assump-
tions in the Hawking-Penrose singularity theorems.
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A null line in a spacetime M is an inextendible null
geodesic which is achronal, i.e. no two points can be
joined by a timelike curve. (Thus each segment of a
null line is maximal.)

• Global condition.

• Null lines arise naturally in causal arguments: E.g.,
recall sets of the form,

∂I±(A) \A , A closed

are ruled by null geodesics which must be achronal.

• Null lines have arisen in many situations, e.g., the
Hawking-Penrose singularity theorems, topological
censorship, Penrose-Sorkin-Woolgar approach to pos-
itive mass, and related results of Gao-Wald on grav-
itational time delay, etc.

• Examples: Minkowski space, de Sitter, anti-de Sit-
ter, Schwarzschild

One expects some rigidity in spacetimes which contain
a null line and which obey the null energy condition.

The NEC tends to focus congruences of null geodesics,
which can lead to the occurence of null conjugate points.
A null geodesic containing a pair of null conjugate points
can’t be achronal.
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Theorem (Null Splitting Theorem). Suppose,
• M is null geodesically complete.
• M obeys the null energy condition,

Ric (X,X) ≥ 0 for all null X.
• M contains a null line η.

Then η is contained in a smooth closed achronal totally
geodesic null hypersurface S.

(1) Ex. Minkowski space - each null geodesic is con-
tained in a unique null hyperplane.

(2) The ”splitting” is in S: B = 0 ⇐⇒ θ = σ = 0 ⇐⇒
metric h on TS/K is invariant under flow generated
by K.

(3) The proof is an application of the maximum principle
for C0 null hypersurfaces. To motivate, consider the
situation in Minkowski space:

Π = lim
x→−∞

∂I+(x) = ∂I+(η)

= lim
y→∞

∂I−(y) = ∂I−(η)

12



Proof: Set,

S+ = ∂I+(η) , S− = ∂I−(η)

Since η is achronal, η ⊂ S+ ∩ S−.

Claim. S+ is a C0 past null hypersurface whose null
generators are past inextendible in M . (Similarly for S−.)

Pf: As an achronal boundary, S+ is an achronal C0 hy-
persurface.

Now, for simplicity assume M is strongly causal. Then
η is closed as a subset of M .

By property of achronal boundaries, each point p ∈ S+\η
is on a null geodesic which is either past inextendible
in M or else has past endpoint on η. The latter is
impossible:

This violates the achronality of S+ .
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Claim. The null mean curvature of S− and of S+ satisfy,

θ+ ≤ 0 ≤ θ− in the support sense.

Pf: By the completeness assumption, and the previous
claim, the generators of S+ are past complete, and the
generators of S− are future complete. Thus, the claim
follows from a previous proposition.

At each point of the intersection p ∈ S+ ∩ S−, S+ lies
locally to the future of S−. Thus be the maximum prin-
ciple S+ and S− agree near p, and form a smooth null
hypersurface with vanishing null mean curvature.

It follows that S+ ∩ S− is both open and closed in S+

and in S−. Thus,

S+ = S+ ∩ S− = S− ,

and S = S+ = S− is a smooth null hypersurface with
θ = 0.

Raychaudhuri’s equation,

dθ

ds
= −Ric (η′, η′)− σ2 − 1

n− 1
θ2

and the NEC now imply that S is totally geodesic.

Note: With regard to the completeness assumption, the
proof only requires that the generators of ∂I+(η) be
past complete and the generators of ∂I−(η) be future
compete.
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