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Motion of a liquid body in vacuum

(the ocean or a star)

Incompressible or compressible perfect fluid
Non-relativistic

Without surface tension and gravitation
v-velocity, p-pressure, p-density, t-time

Free boundary problem:

The velocity tells the boundary where to move.
The boundary is the zero set of the pressure
and the pressure determines the acceleration.
(Regularity of the boundary is intimately con-
nected to the regularity of the velocity. )



Euler’s equations
p(at—l—ch’?k)vi = -9;p inD i=1,...,n(1)

(8; + Vkd)p+ pdivV =0, in D (2)
8[{:: %, szvk, Vk8k= Z’:lvkak, divV=8kV"7

Equation of state

Compressible case: p = p(p), (3)

p(po) =0, pg >0, p'(p) >0, p>pg (4)
Incompressible case: p = constant (5)

Boundary conditions
(3 + V*Op)lap € T(OD) (6)
p=0, on 0D (7)
T(0D) is the tangent space of the boundary.

Initial conditions
{z; (0,2) € D} = Dyg (8)
v(0,z) = ’UO(CL’), p(0,z) = pO(x)a in Do (9)
Compatibility conditions Formal power se-

ries solution (V, p), in time of Euler’s eq. and
initial cond. should satisfy boundary cond.:

(¢4 V*0,) (5-50) 0} xape =05 4=0,..(10)



Local Existence?:

Given a domain Dg C R"™, a vector field vg and
a function pg in Dg satisfying the compatibility
conditions (10).

Find a domain D = UO<t<T{t} X Dy, Dy C R,
a vector field v and a function p, depending
on ¢t and defined in D, such that (1)-(9) hold.

Local existence for analytic data
Baouendi-Goulaouic, Nishida
(incompressible irrotational case)

Instability in Sobolev norms?
Rayleigh-Taylor Instability

(heavier fluid above lighter)

Ebin's counterexample (when p<0, Vyp>0).

Physical condition

Vnp <—cg <0, on 9Dy, (11)

where Vy = N*§, and N is the exterior normal
Since the pressure of a fluid has to be positive
Needed for local existence in Sobolev Spaces.
Holds in the incompressible irrotational case.

Vorticity: curl Vij = aivj — 33"07;
Incompressible fluid: divV =20
Irrotational fluid: curlv = 0.



Local existence in Sobolev spaces:

I) Incompressible Irrotational case:

Local existence for Water wave problem:
Yosihara, Nalimov:close to still water in R2
Wou:in general in R2 and R3

(no instability when water wave turns over,
physical cond. hold in the irrotational case)

II) General Incompressible case:

Ebin-local exist with surface tension(announced)
Christodoulou-L: i) Sobolev norms remain bounded
as long as the physical cond. hold, the first
order derivatives of the velocity are bounded

and the second fundamental form of the free
surface is bounded. ii) local a priori bounds

for Sobolev norms with lower regularity.

L: iii) Local existence assuming physical con-
dition holds initially.

III) General Compressible case:
L: Local existence assuming physical condi-
tion holds initially.

IV) Generalizations:

L: Newtonian gravity, special relativity.
Relativity: Existence in special cases by Ren-
dall, Christodoulou, Friedrich.



Lagrangian coordinates: f; :y — z(t,vy):

dz/dt=v(t,z), =(0,y)=/fo(y), y €2
Boundary becomes fixed in the (¢,y) coord.

0@90

Lagrangian (t,vy) Eulerian (¢, x)

[0,T] x D = Ug<¢<T{t} X Dy
dy = Oy dy = & + V9,
_—_0oy* 0 _— 0

O = 5% By O = gk
Euler’'s eq:
p drv; = —0;p,
dip + pdivV =0
dix; = v

dik — kdivV =0,

where k = det(0dx/0y), so p = k/k where k =
k(y) can be chosen to be constant.



Energies

Er(t) = |lvllgr(py + llollar(py) + 10l grr—2¢o0,)

where 6,; = 0;N; is the second fundamental
form of 0Dky.

Energy bound: E.(t) < Cr(t,cal)Er(O),
where Vyp < —cg < 0.

Energy Conservation Eq(t) = Eg(0) where

Bot) = [ (VPP +Q(p)pda,

and Q(p) =2 [ p(p)p~2dp.

Proof of Energy conservation: With k =
det(@x/0y) we have

t

a

4By = [op (d([V]2 4 Q(p)))pdz
— th(_szaip + 2pp_1dt,0) dx =



Euler's eq. With h(p) = ﬁpop’(p)p_l dp the
enthalphy we have

dic' +8;h =0, p=k/r, hlgg=0
where h = h(p), kK = det(0z/0y)

Linearized equations Consider a family of
solutions x = z(¢,y,r) depending on an extra
parameter r and let éx = 0z(t,y,r)/0r|,—p-

d26z" + 8;6h — (8,h)8;62" = 0,
ép = —pdivéx, Jdh|gn =0.
Sh = h'(p)dp
since [4,8;] = —(8;6x%)8;, and 6k = —kdiviz.

Energy bounds: E.(t) <Cy(z,t, cal)Er(O) where

Er(t) = [16v]l gr(p,) T 110l er(D,) + 11001 gr—2(a,)
and Vyh < —cg < O.

EXxistence for linearized equations: Non stan-
dard because the higher order operator —(9;h)d;0x*
is not elliptic. It is positive because Vyh < 0.
Existence for Euler’s eq.: Follows from ex-
istence and tame estimates for the linearized
equations using the Nash-Moser technique.



rewriting the linearized equations:
X + AX = B(X, X), divX|so =0

where X = édx, B is a bounded operator and
X = L4 X is a modified Lie derivative:

—1 8:131
oy?

oy?
oxk
that preserves the divergence free condition:
divLy X = didivX, where dy = d; + divV.

A is a positive symmetric operator on vector
fields satisfying the boundary condition if the
physical condition Vyp < 0 hold.

Lg X' = Lg X' +divV X' =& dy(h——7X")

AX = —V(hpdivX + (8,h) XF), V'=09;

(X, p AZ) =/ div(pX)div(pZ)h'dz +

t

XNZN(—VNp)dS, XN =X -N
0Dy

Energy Egj= (X,pX)+ (X, pAX)

E, = ||X||Hr(Q) + |[divX||grq) + IXN Il g a0)



Orthogonal projection onto divergence free
vector fields

PX =X —-Vq, Aq=divX, qlgo =0
Decompose: X = Xg+ X7, where Xg = PX.
dZdivX — A(p'divX) = A(XFOh) + div B,
with Dirichlet boundary cond. divX|go =0

AX = PAX = P(—V(X"*8,h))
since the projection of the gradient of a func-
tion that vanishes on the boundary vanishes.
Xo4 AXog = —AX{ — PB>(X1,X1) + PB(X, X)
using that [Lg,, P1X = O(X). Here A is sym-

metric and positive:

(X,AZ)= | XnZy(-Vyh)dS, divX=divZ=0
t

Energies Fg = <X0, X0> + <X0, AXO>.



Existence and estimates for the divergence
free equation:

X+AX =F divX = divF =0

Er = | Xl gr(q) + IXNll gra9)

Br(8) < Cr(Br(0) + [ 1Pl r(cyr)

Replace A by a a sequence of bounded oper-
ators A€ for which existence is know and such
that we uniformly have the same energy esti-
mates as € — 0.

A X = —P(xe(d)Vhd 1 X*0,d)
= P(x.(d)(Vd)hd~ 1 X*8d)
where d = d(y) = dist(y,02), xe(d) = x(d/e).

Here x(s) = 1, when s > 1, x(s) = 0, when
s <0, and x/(s) > 0.



