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Elements of Lorentzian Geometry

Mn+1 = smooth Lorentzian manifold
= smooth manifold equipped with metric

g = 〈 , 〉 having signature (−+ · · ·+)

The null cone Vp at p ∈M is the set,

Vp = {X ∈ TpM ; 〈X, X〉 = gijX
iXj = 0}

We always assume M is time orientable , i.e. that the
assignment of a past and future cone, V−p and V+

p , can
be made in a continuous manner on M .

spacetime = time oriented Lorentzian manifold

Let,

∇ = Levi-Civita connection

For vector fields X = Xa, Y = Y b,

∇XY = Xa∇aY
b
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Riemann curvature tensor. For vector fields X, Y , Z,

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

The components are determined by,

R(∂i, ∂j)∂k = R`
kij∂`

The Ricci tensor and scalar curvature are obtained by
tracing,

Rij = R`
i`j and R = gijRij

Past and Futures:

Def. For p ∈M ,

I+(p) = timelike future of p

= {q ∈M : ∃ future directed timelike
curve from p to q}

J+(p) = causal future of p

= {q ∈M : ∃ future directed causal
curve from p to q}

Note: I+(p) is always open, but J+(p) need not be
closed.
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Def. For A ⊂M ,

I+(A) = {q ∈M : ∃ future directed timelike
curve from some p ∈ A to q}

= ∪p∈AI+(p) (always open)

J+(A) = {q ∈M : ∃ future directed causal
curve from some p ∈ A to q}

= ∪p∈AJ+(p)

Prop. q ∈ J+(p) and r ∈ I+(q)⇒ r ∈ I+(p), etc.

Prop. If q ∈ J+(p) \ I+(p) then any causal curve γ from
p to q must be a null geodesic.

Note: I−(p), J−(p), I−(A), J−(A) defined time-dually.
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Global hyperbolicity:

Def. Strong Causality holds at p ∈ M provided there
are arbitrarily small neighborhoods U of p such that any
causal curve γ which starts in, and leaves, U never re-
turns to U .

Def. M is globally hyperbolic provided

• M is strongly causal

• The sets J+(p) ∩ J−(q) are compact
∀p, q ∈M

Def. A Cauchy surface for M is an achronal C0 hyper-
surface S in M which is met by every inextendible causal
curve in M .

Comment: Equivalently, an achronal hypersurface S is
Cauchy provided D(S) = M ⇐⇒ H(S) = ∅

Prop. M is globally hyperbolic iff M admits a Cauchy
surface.
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Prop. If S is a Cauchy surface for M then M is home-
omorphic to R× S.

(Moreover the homeomorphism can be arranged so that
{t} × S is Cauchy ∀t.)

Prop. If S is a compact achronal hypersurface in a glob-
ally hyperbolic spacetime M then S must be a Cauchy
surface for M .

Prop. If M is globally hyperbolic then

• J±(A) are closed ∀A ⊂M compact.

• J+(A) ∩ J−(B) is compact ∀A, B ⊂M compact.
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Geometry of Null Hypersurfaces

Def. A smooth null hypersurface in (M, g) is a smooth
co-dim one submanifold S of M , such that the pullback
of g to S is degenerate.

Such an S admits a smooth future directed null tangent
vector field K such that

[Kp]
⊥ = TpS ∀p ∈ S

Note:

• Every vector X tangent to S, and not a multiple of
K, is spacelike.

• K is unique up to a positive pointwise scale factor.

Prop. The integral curves of K, when suitably param-
eterized, are null geodesics (and are called the null gen-
erators of S).
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Proof: Suffices to show:

∇KK = λK

This follows by showing at each p ∈ S,

∇KK ⊥ TpS , i.e., 〈∇KK, X〉 = 0 ∀X ∈ TpS

Extend X ∈ TpS by making it invariant under the flow
generated by K,

[K, X] = ∇KX −∇XK = 0

X remains tangent to S, so along the flow line through p,

〈K, X〉 = 0

Differentiating,

K〈K, X〉 = 〈∇KK, X〉+ 〈K,∇KX〉 = 0

〈∇KK, X〉 = −〈K,∇XK〉 = −1

2
X〈K, K〉 = 0.

QED
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Null Weingarten Map/Null 2nd Fundamental Form.

One works mod K: For X, Y ∈ TpS,

X = Y mod K ⇐⇒ X − Y = λK

Let X denote equivalence class of X ∈ TpS and let,

TpS/K = {X : X ∈ TpS}
Then,

TS/K = ∪p∈STpS/K

is a rank n− 1 vector bundle over S (n = dimS).

Positive definite metric on TS/K:

h : TpS/K × TpS/K → R

h(X, Y ) = 〈X, Y 〉

Well-defined: X ′ = X mod K, Y ′ = Y mod K ⇒
〈X ′, Y ′〉 = 〈X + αK, Y + βK〉

= 〈X, Y 〉+ β〈X, K〉+ α〈K, Y 〉+ αβ〈K, K〉
= 〈X, Y 〉
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Weingarten Map:

b : TpS/K → TpS/K

b(X) = ∇XK

Well-defined: X ′ = X mod K ⇒
∇X ′K = ∇X+αKK

= ∇XK + α∇KK = ∇XK + αλK

= ∇XK mod K

Second Fundamental Form:

B : TpS/K × TpS/K → R

B(X, Y ) = h(b(X), Y )

= 〈∇XK, Y 〉

Prop. B is symmetric, B(X, Y ) = B(Y , X), ∀X, Y ∈
TpS/K, and hence b is self-adjoint.

Proof. Extend X, Y to vector fields tangent to S near p.
Using X〈K, Y 〉 = 0 and Y 〈K, X〉 = 0,

B(X, Y ) = 〈∇XK, Y 〉 = −〈K,∇XY 〉

= −〈K,∇Y X〉+ 〈K, [X, Y ]〉

= 〈∇Y K, X〉 = B(Y , X)
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Null mean curvature (expansion scalar):

θ = tr b

= div K (essentially)

Let Σ be the intersection of S with a hypersurface in M
which is transverse to K near p ∈ S; Σ will be an n− 1
dimensional spacelike submanifold of M .

Let {e1, e2, · · · , en−1} be an orthonormal basis for TpΣ
in the induced metric. Then {e1, e2, · · · , en−1} is an or-
thonormal basis for TpS/K.

Hence,

θ = tr b =
n−1∑
i=1

h(b(ei), ei)

=
n−1∑
i=1

〈∇ei
K, ei〉

= divΣK at p
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Thus, θ measures the expansion of the null generators
of S towards the future.

θ > 0 θ < 0

Effect of scaling K:

Prop. K̃ = fK ⇒ b
K̃

= f bK, and hence θ
K̃

= f θK

Proof:

∇XK̃ = ∇X(fK) = X(f)K + f∇XK = f∇XK modK

Note: In particular, the Weingarten map b = bK at a
point p ∈ S is uniquely determined by the value of K
at p.

11



Comparison theory.

Let η : I → M , s → η(s), be an affinely parameterized
null geodesic generator of S, and let

b(s) = bη′(s)

be the null Weingarten map at η(s) wrt the null tangent
vector η′(s).

The family of Weingarten maps b = b(s) along η obeys
the Ricatti equation,

b′+ b2 + R = 0, ′ = ∇η′

where, by def.,

b′(X) = b(X)′ − b(X ′), (and (Y )′ = Y ′)

R(X) = R(X, η′)η′ .
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Proof:

Fix p = η(s0) on η, and scale K so that in a neighbor-
hood of p,

(i) K is geodesic, ∇KK = 0.

(ii) K = η′ along η.

Extend X ∈ TpS near p by making it invariant under the
flow generated by K,

[K, X] = ∇KX −∇XK = 0 .

Then,

R(X, K)K = ∇X∇KK −∇K∇XK −∇[X,K]K = −∇K∇KX ,

i.e., along η, X satisfies,

X ′′ = −R(X, η′)η′ .

Thus,

b′(X) = ∇XK ′ − b(∇KX) = ∇KX ′ − b(∇XK)

= X ′′ − b(b(X)) = −R(X, η′)η′ − b2(X)

= −R(X)− b2(X)

QED
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By tracing, we obtain along η that θ = θ(s) obeys,

dθ

ds
= −Ric (η′, η′)− tr b2 ,

or,

dθ

ds
= −Ric (η′, η′)− σ2 − 1

n− 1
θ2

Raychaudhuri’s equation

where σ is the shear scalar, σ2 = tr b̂2, b̂ = b− 1
n−1

θ · id.

Prop. Let S be a smooth null hypersurface in a space-
time M which obeys the null energy condition,

Ric (X, X) ≥ 0 ∀ null vectors X .

Then, if the null generators of S are future geodesically
complete, S has nonnegative null mean curvature, θ ≥ 0.

Proof. Suppose θ < 0 at p ∈ S. Let s→ η(s) be the null
generator of S passing through p = η(0).

Let b(s) = bη′(s), and take θ = tr b. By invariance of sign
under scaling, θ(0) < 0.
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By Raychaudhuri’s equation and the NEC,

dθ

ds
≤ − 1

n− 1
θ2 ,

and hence θ < 0 for s > 0. Dividing through by θ2 gives,

d

ds

(
1

θ

)
≥ 1

n− 1
,

which implies 1/θ → 0, i.e., θ → −∞ in finite affine
parameter time, →←.

Re: Hawking area theorem; cf., Chruściel, Delay, G.
Howard (2001).

Totally geodesic null hypersurfaces.

By def., a smooth null hypersurface S is totally geodesic
iff B ≡ 0 (or, equivalently, iff θ = σ = 0).

Prop. A null hypersurfaces S is totally geodesic iff
geodesics starting tangent to S remain in S.

Ex. Null hyperplanes in Minkowski space, the event hori-
zon in Schwarzschild are totally geodesic.
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Maximum Principle for Smooth Null hypersurfaces.

Theorem. Suppose

• S1 and S2 are smooth null hypersurfaces in M .

• S1 , S2 meet at p ∈ M , with S2 to the future side
of S1 near p.

• θ2 ≤ 0 ≤ θ1 .

Then S1 and S2 coincide near p, and θ1 = θ2 = 0.

Proof:

S1 and S2 have a common null direction at p. Let Q
be a timelike hypersurface in M passing through p and
transverse to this direction. Consider the intersections,

Σ1 = S1 ∩Q , Σ2 = S2 ∩Q

Σ1 and Σ2 are spacelike hypersurfaces in Q, with Σ2 to
the future of Σ1 near p.
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Express Σ1 and Σ2 as graphs over a fixed hypersurface
V in Q,

Σ1 = graph (u1) , Σ2 = graph (u2)

Let,

θ(ui) = θi|Σi= graph(ui)
, i = 1,2

By a computation,

θ(ui) = H(ui) + l.o.t.

where H = mean curvature operator on spacelike graphs
over V in Q. Thus θ is a second order quasi-linear elliptic
operator.

We have:

• u1 ≤ u2, and u1(p) = u2(p).

• θ(u2) ≤ 0 ≤ θ(u1).

By the strong maximum principle, u1 = u2.

Thus, S1 and S2 agree near p in Q. Now, vary Q to get
agreement on a neighborhood.
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