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Elements of Lorentzian Geometry

Mt smooth Lorentzian manifold

smooth manifold equipped with metric
g = (, ) having signature (— 4+ ---+)

The null cone V, at p &€ M is the set,

V= {X € T,M; (X, X) = g;X'X’ =0}
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We always assume M is time orientable , i.e. that the
assignment of a past and future cone, Vp— and V]jr, can
be made in a continuous manner on M.

spacetime = time oriented Lorentzian manifold

Let,
V = Levi-Civita connection

For vector fields X = X¢ Y = Y?,
VyY = XV, Y?



Riemann curvature tensor. For vector fields X, Y, Z,

R(X, Y)Z — VXVYZ — VYVXZ — V[X,Y]Z
The components are determined by,
R(0;,0;)0x = R0

The Ricci tensor and scalar curvature are obtained by
tracing,

Past and Futures:

Def. Forpe M,

IT(p) = timelike future of p
{q € M : 3 future directed timelike
curve from p to ¢}

JT(p) causal future of p
{q € M : 3 future directed causal

curve from p to g}

Note: IT(p) is always open, but Jt(p) need not be
closed.
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Def. For A C M,

IT(A) = {qe M :3 future directed timelike
curve from some p € A to g}

= Upeal™(p) (always open)

JT(A)

{q € M : 3 future directed causal
curve from some p € A to g}

— UpEAJ+ (p)

Prop. g€ Jt(p) and r € IT(q) = r € IT(p), etc.

Prop. If g€ JT(p) \ IT(p) then any causal curve v from
p to q must be a null geodesic.

Note: I-(p), J (p), I-(A), J (A) defined time-dually.



Global hyperbolicity:

Def. Strong Causality holds at p € M provided there
are arbitrarily small neighborhoods U of p such that any
causal curve v which starts in, and leaves, U never re-

turns to U.

Def. M is globally hyperbolic provided
e M is strongly causal ;!

e The sets JT(p)NJ (q) are compact
Vp,q € M

|l|'l

Def. A Cauchy surface for M is an achronal C° hyper-
surface S in M which is met by every inextendible causal

curve in M.
S

Comment: Equivalently, an achronal hypersurface S is
Cauchy provided D(S) = M <= H(S) =10

Prop. M is globally hyperbolic iff M admits a Cauchy
surface.



Prop. If S is a Cauchy surface for M then M is home-
omorphic to R x S.

(Moreover the homeomorphism can be arranged so that
{t} x S is Cauchy Vt.)

Prop. If S is a compact achronal hypersurface in a glob-
ally hyperbolic spacetime M then S must be a Cauchy
surface for M.

Prop. If M is globally hyperbolic then
e JE(A) are closed VA C M compact.
o JT(A)NJ (B) is compact YA, B C M compact.



Geometry of Null Hypersurfaces

Def. A smooth null hypersurface in (M, g) is a smooth
co-dim one submanifold S of M, such that the pullback
of g to S is degenerate.

Such an S admits a smooth future directed null tangent
vector field K such that

[K,]t =T,S Vp € S
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Note:

e Every vector X tangent to S, and not a multiple of
K, is spacelike.

e K is unique up to a positive pointwise scale factor.

Prop. The integral curves of K, when suitably param-
eterized, are null geodesics (and are called the null gen-
erators of S).



Proof: Suffices to show:

VK = AK

This follows by showing at each p € S,

VikK L T,S, Iie., (VKkK, X)=0 VX e 1,5

Extend X € 7,5 by making it invariant under the flow
generated by K,

[K,X]=VrkX -VxK=0 K

X remains tangent to S, so along the flow line through p,

(K, X)=0
Differentiating,
K(K,X) = (VKK,X)+ (K, VgX)=0
1
(VKkK,X) = —(K,VXK>:—5X(K,K>=0.

QED



Null Weingarten Map/Null 2nd Fundamental Form.

One works mod K: For X,Y € 1T,S,
X =Y mod K <— X —-Y = )\K

Let X denote equivalence class of X € T,S and let,
T,S/K = {X : X € T,S}
Then,
TS/K = UpesTpS/K

is @ rank n — 1 vector bundle over S (n =dim S).

Positive definite metric on TS/K:

h:T,S/K xT,S/K — R
h(X,Y) = (X,Y)

Well-defined: X' =X mod K, Y =Y mod K =

<X’,Y’> (X +aK,Y + BK)
(X,Y) + B(X,K) + o(K,Y) + aB(K, K)
(X, Y)



Weingarten Map:

b:T,5/K — T,5/K

W(X) = VxK
Well-defined: X' = X mod K =

VX/K vX—l—aKK
VK +aVigK =VxK + a\K
= VxK mod K

Second Fundamental Form:

B:T,S/K xT,S/K — R

B(X,Y) h(b(X),Y)

— <V)(K, Y>
Prop. B is symmetric, B(X,Y) = B(Y,X),VX,Y
T,S/K, and hence b is self-adjoint.

Mm

Proof. Extend X,Y to vector fields tangent to S near p.
Using X(K,Y) =0 and Y (K, X) =0,

B(X,)Y) = (VxK,Y)=—(K,VxY)

= —(K,VyX)+ (K, [X,Y])

(VyK,X) = B(Y,X)



Null mean curvature (expansion scalar):

Na)
[

trb
div K (essentially)

Let > be the intersection of S with a hypersurface in M
which is transverse to K near pe S; >~ will beann—-1
dimensional spacelike submanifold of M.

Let {e1,e2,---,en—1} be an orthonormal basis for T,%
in the induced metric. Then {ej,éo,---,€é,—1} iS an or-
thonormal basis for T,,S/K.

Hence,

n—1
o=trb = > h(b(@),e)
=1

n—1
=1
= divs K atp
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Thus, 8§ measures the expansion of the null generators
of S towards the future.

>0 0 <0

Effect of scaling K :

~

Prop. K = fK = blf} = fbg, and hence 9[}/ = fOg
Proof:

VK =Vx(fK) = X(f)K + fVxK = fVxK modK

Note: In particular, the Weingarten map b = by at a
point p € S is uniquely determined by the value of K

at p.
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Comparison theory.

Let n: I — M, s — n(s), be an affinely parameterized
null geodesic generator of S, and let

1
o
b(s) = by(s) o

be the null Weingarten map at n(s) wrt the null tangent
vector 7n'(s).

The family of Weingarten maps b = b(s) along n obeys
the Ricatti equation,

b'+b°+ R =0, = Vy

where, by def.,
V(X)) = b(X) -b(X"), (and (Y) =Y")

R(X) = R(X,n")7n.
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Proof:

Fix p = n(sp) on n, and scale K so that in a neighbor-
hood of p,

(i) K is geodesic, VKK = 0.
(ii) K =7 along 7.

Extend X € T,S near p by making it invariant under the
flow generated by K,

[K,X]=VgX-VxK=0.
Then,

R(X,K)K =VxVgkK - VgVxK — Vix kK = —VgVEgX,
i.e., along n, X satisfies,
X" = —R(X, 7).

Thus,
V(X) = VxK' —b(VgX)=VrX —b(VxK)

= X" —b(b(X)) = —R(X,n)n — b*(X)

= —R(X)-bv(X)
QED
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By tracing, we obtain along n that 6 = 6(s) obeys,

do

— = —Ric(v,n) —tr b2,
ds

or,

db 1
~ = Ric(, 1)~ 0% — 67
ds n—1

Raychaudhuri’'s equation

where o is the shear scalar, 02 =trb2, b=b— 10 -id.

n—1
Prop. Let S be a smooth null hypersurface in a space-
time M which obeys the null energy condition,

Ric(X,X) >0 V null vectors X .

Then, if the null generators of S are future geodesically
complete, S has nonnegative null mean curvature, 6 > 0.

Proof. Suppose §# <0 atpe S. Let s — n(s) be the null
generator of S passing through p = 7n(0).

Let b(s) = b,(), and take 6§ = tr b. By invariance of sign
under scaling, 6(0) < O.
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By Raychaudhuri’'s equation and the NEC,

do 1
<

E - n-—1
and hence 6 < 0 for s > 0. Dividing through by 62 gives,

d (1 1
~ (=) > :
ds (9)_77,—1

which implies 1/0 — 0, i.e., § — —oo in finite affine
parameter time, —«.

92

Re: Hawking area theorem; cf., Chrusciel, Delay, G.
Howard (2001).

Totally geodesic null hypersurfaces.

By def., a smooth null hypersurface S is totally geodesic
iff B =0 (or, equivalently, iff 8 = o = 0).

Prop. A null hypersurfaces S is totally geodesic iff
geodesics starting tangent to S remain in S.

EXx. Null hyperplanes in Minkowski space, the event hori-
zon in Schwarzschild are totally geodesic.
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Maximum Principle for Smooth Null hypersurfaces.

Theorem. Suppose
e S1 and S, are smooth null hypersurfaces in M.

e S1, S meet at p € M, with S, to the future side
of S1 near p.

o b <00,

Then S1 and S> coincide near p, and 61 = 6, = 0.

Proof:

S1 and S»> have a common null direction at p. Let @
be a timelike hypersurface in M passing through p and
transverse to this direction. Consider the intersections,

-

=5NQ, =5
> 1NQ >o >NQ 7:*45-
/

2 1 and >, are spacelike hypersurfaces in Q, with >, to
the future of 21 near p.
16



Express 31 and 2>, as graphs over a fixed hypersurface
Viin Q,

>1 = graph (u1), >, = graph (uz)
Let,

0(ui) = 0ilz = graph () =12
By a computation,

where H = mean curvature operator on spacelike graphs
over Vin Q. Thus 6 is a second order quasi-linear elliptic
operator.

We have:

o uy < wup, and ui(p) = ua(p).
o O(uz) <0 < 0(u1).

By the strong maximum principle, ui1 = wu».

Thus, S1 and S5 agree near p in Q. Now, vary Q to get
agreement on a neighborhood.
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