Global Lorentzian Geometry and the Einstein Equations

G. Galloway

Part I

- Causal theory
- Geometry of smooth null hypersurfaces
- Maximum Principle for smooth null hypersurfaces

Part II

- Achronal boundaries
- C^0 null hypersurfaces
- Maximum Principle for C^0 null hypersurfaces
- The null splitting theorem

Part III - Applications

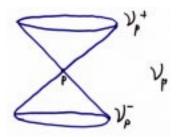
- Uniqueness results for asymptotically de Sitter and asymptotically flat solutions of the vacuum Einstein equations
- Results on the topology of asymptotically de Sitter solutions of the Einstein equations

Elements of Lorentzian Geometry

$$M^{n+1}$$
 = smooth Lorentzian manifold
= smooth manifold equipped with metric
 $g = \langle , \rangle$ having signature $(- + \dots +)$

The null cone \mathcal{V}_p at $p \in M$ is the set,

$$\mathcal{V}_p = \{X \in T_p M; \langle X, X \rangle = g_{ij} X^i X^j = 0\}$$



We always assume M is time orientable, i.e. that the assignment of a past and future cone, \mathcal{V}_p^- and \mathcal{V}_p^+ , can be made in a continuous manner on M.

spacetime = time oriented Lorentzian manifold

Let,

 $\nabla = \mathsf{Levi-Civita}$ connection

For vector fields $X = X^a$, $Y = Y^b$,

$$\nabla_X Y = X^a \nabla_a Y^b$$

<u>Riemann curvature tensor.</u> For vector fields X, Y, Z,

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$$

The components are determined by,

$$R(\partial_i,\partial_j)\partial_k = R^\ell_{kij}\partial_\ell$$

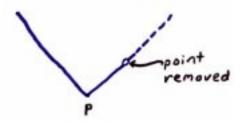
The Ricci tensor and scalar curvature are obtained by tracing,

$$R_{ij} = R^{\ell}_{i\ell j}$$
 and $R = g^{ij}R_{ij}$

Past and Futures:

Def. For
$$p \in M$$
,
 $I^+(p) = \text{timelike future of } p$
 $= \{q \in M : \exists \text{ future directed timelike} \\ \text{curve from } p \text{ to } q\}$
 $J^+(p) = \text{causal future of } p$
 $= \{q \in M : \exists \text{ future directed causal} \\ \text{curve from } p \text{ to } q\}$

<u>Note:</u> $I^+(p)$ is always open, but $J^+(p)$ need not be closed.

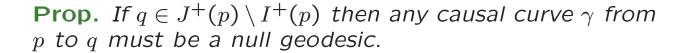


Def. For $A \subset M$,

$$I^{+}(A) = \{q \in M : \exists \text{ future directed timelike} \\ \text{curve from some } p \in A \text{ to } q\} \\ = \cup_{p \in A} I^{+}(p) \quad (\text{always open})$$

$$J^{+}(A) = \{q \in M : \exists \text{ future directed causal} \\ \text{curve from some } p \in A \text{ to } q\} \\ = \cup_{p \in A} J^{+}(p)$$

Prop. $q \in J^+(p)$ and $r \in I^+(q) \Rightarrow r \in I^+(p)$, etc.



<u>Note</u>: $I^{-}(p)$, $J^{-}(p)$, $I^{-}(A)$, $J^{-}(A)$ defined time-dually.

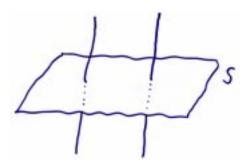
Global hyperbolicity:

Def. Strong Causality holds at $p \in M$ provided there are arbitrarily small neighborhoods U of p such that any causal curve γ which starts in, and leaves, U never returns to U.

Def. M is globally hyperbolic provided

- *M* is strongly causal
- The sets $J^+(p) \cap J^-(q)$ are compact $\forall p, q \in M$

Def. A Cauchy surface for M is an achronal C^0 hypersurface S in M which is met by every inextendible causal curve in M.



<u>Comment</u>: Equivalently, an achronal hypersurface S is Cauchy provided $D(S) = M \iff H(S) = \emptyset$

Prop. M is globally hyperbolic iff M admits a Cauchy surface.

Prop. If S is a Cauchy surface for M then M is homeomorphic to $\mathbb{R} \times S$.

(Moreover the homeomorphism can be arranged so that $\{t\} \times S$ is Cauchy $\forall t$.)

Prop. If S is a compact achronal hypersurface in a globally hyperbolic spacetime M then S must be a Cauchy surface for M.

Prop. If M is globally hyperbolic then

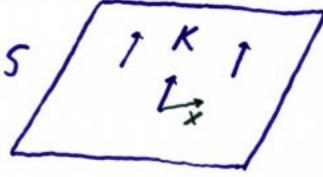
- $J^{\pm}(A)$ are closed $\forall A \subset M$ compact.
- $J^+(A) \cap J^-(B)$ is compact $\forall A, B \subset M$ compact.

Geometry of Null Hypersurfaces

Def. A smooth null hypersurface in (M,g) is a smooth co-dim one submanifold S of M, such that the pullback of g to S is degenerate.

Such an ${\cal S}$ admits a smooth future directed null tangent vector field ${\cal K}$ such that

$$[K_p]^{\perp} = T_p S \qquad \forall p \in S$$



Note:

- Every vector X tangent to S, and not a multiple of K, is spacelike.
- K is unique up to a positive pointwise scale factor.

Prop. The integral curves of K, when suitably parameterized, are null geodesics (and are called the null generators of S).

Proof: Suffices to show:

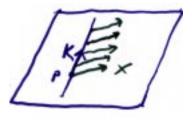
$$\nabla_K K = \lambda K$$

This follows by showing at each $p \in S$,

 $\nabla_K K \perp T_p S$, i.e., $\langle \nabla_K K, X \rangle = 0 \quad \forall X \in T_p S$

Extend $X \in T_pS$ by making it invariant under the flow generated by K,

$$[K,X] = \nabla_K X - \nabla_X K = 0$$



X remains tangent to S, so along the flow line through p,

$$\langle K, X \rangle = 0$$

Differentiating,

$$K\langle K, X \rangle = \langle \nabla_K K, X \rangle + \langle K, \nabla_K X \rangle = 0$$

$$\langle \nabla_K K, X \rangle = -\langle K, \nabla_X K \rangle = -\frac{1}{2} X \langle K, K \rangle = 0.$$

QED

One works mod K: For $X, Y \in T_pS$,

$$X = Y \mod K \iff X - Y = \lambda K$$

Let \overline{X} denote equivalence class of $X \in T_pS$ and let,

$$T_pS/K = \{\overline{X} : X \in T_pS\}$$

Then,

$$TS/K = \cup_{p \in S} T_p S/K$$

is a rank n-1 vector bundle over S ($n = \dim S$).

Positive definite metric on TS/K:

 $h: T_p S/K \times T_p S/K \rightarrow \mathbb{R}$ $h(\overline{X}, \overline{Y}) = \langle X, Y \rangle$

Well-defined: $X' = X \mod K$, $Y' = Y \mod K \Rightarrow$

$$\begin{array}{lll} \langle X',Y'\rangle &=& \langle X+\alpha K,Y+\beta K\rangle \\ &=& \langle X,Y\rangle+\beta \langle X,K\rangle+\alpha \langle K,Y\rangle+\alpha \beta \langle K,K\rangle \\ &=& \langle X,Y\rangle \end{array}$$

Weingarten Map:

$$b: T_p S/K \rightarrow T_p S/K$$
$$b(\overline{X}) = \overline{\nabla_X K}$$
Well-defined: X' = X mod K \Rightarrow
$$\nabla_{X'} K = \nabla_{X+\alpha K} K$$
$$= \nabla_X K + \alpha \nabla_K K = \nabla_X K + \alpha \lambda K$$

$$= \nabla_X K \mod K$$

Second Fundamental Form:

$$B: T_p S/K \times T_p S/K \to \mathbb{R}$$
$$B(\overline{X}, \overline{Y}) = h(b(\overline{X}), \overline{Y})$$
$$= \langle \nabla_X K, Y \rangle$$

Prop. B is symmetric, $B(\overline{X}, \overline{Y}) = B(\overline{Y}, \overline{X}), \forall \overline{X}, \overline{Y} \in T_pS/K$, and hence b is self-adjoint.

Proof. Extend X, Y to vector fields tangent to S near p. Using $X\langle K, Y \rangle = 0$ and $Y\langle K, X \rangle = 0$,

$$B(\overline{X}, \overline{Y}) = \langle \nabla_X K, Y \rangle = -\langle K, \nabla_X Y \rangle$$
$$= -\langle K, \nabla_Y X \rangle + \langle K, [X, Y] \rangle$$
$$= \langle \nabla_Y K, X \rangle = B(\overline{Y}, \overline{X})$$

9

Null mean curvature (expansion scalar):

$$\theta = \operatorname{tr} b$$

= div K (essentially)

Let Σ be the intersection of S with a hypersurface in M which is transverse to K near $p \in S$; Σ will be an n-1 dimensional spacelike submanifold of M.



Let $\{e_1, e_2, \dots, e_{n-1}\}$ be an orthonormal basis for $T_p \Sigma$ in the induced metric. Then $\{\overline{e}_1, \overline{e}_2, \dots, \overline{e}_{n-1}\}$ is an orthonormal basis for $T_p S/K$.

Hence,

$$\theta = \operatorname{tr} b = \sum_{i=1}^{n-1} h(b(\overline{e}_i), \overline{e}_i)$$
$$= \sum_{i=1}^{n-1} \langle \nabla_{e_i} K, e_i \rangle$$
$$= \operatorname{div}_{\Sigma} K \quad \text{at } p$$

Thus, θ measures the expansion of the null generators of S towards the future.

Effect of scaling K:

Prop. $\widetilde{K} = fK \Rightarrow b_{\widetilde{K}} = f b_K$, and hence $\theta_{\widetilde{K}} = f \theta_K$

Proof:

 $\nabla_X \widetilde{K} = \nabla_X (fK) = X(f)K + f\nabla_X K = f\nabla_X K \mod K$

<u>Note</u>: In particular, the Weingarten map $b = b_K$ at a point $p \in S$ is uniquely determined by the value of K at p.

Comparison theory.

Let $\eta : I \to M$, $s \to \eta(s)$, be an affinely parameterized null geodesic generator of S, and let

 $b(s) = b_{\eta'(s)}$

be the null Weingarten map at $\eta(s)$ wrt the null tangent vector $\eta'(s)$.

The family of Weingarten maps b = b(s) along η obeys the Ricatti equation,

$$b' + b^2 + R = 0, \qquad ' = \nabla_{\eta'}$$

where, by def.,

 $b'(\overline{X}) = b(\overline{X})' - b(\overline{X}'), \text{ (and } (\overline{Y})' = \overline{Y'})$ $R(\overline{X}) = \overline{R(X, \eta')\eta'}.$ Proof:

Fix $p = \eta(s_0)$ on η , and scale K so that in a neighborhood of p,

- (i) *K* is geodesic, $\nabla_K K = 0$.
- (ii) $K = \eta'$ along η .

Extend $X \in T_pS$ near p by making it invariant under the flow generated by K,

$$[K,X] = \nabla_K X - \nabla_X K = 0.$$

Then,

$$R(X,K)K = \nabla_X \nabla_K K - \nabla_K \nabla_X K - \nabla_{[X,K]} K = -\nabla_K \nabla_K X,$$

i.e., along η , X satisfies,

$$X'' = -R(X, \eta')\eta'.$$

Thus,

$$b'(\overline{X}) = \overline{\nabla_X K'} - b(\overline{\nabla_K X}) = \overline{\nabla_K X'} - b(\overline{\nabla_X K})$$
$$= \overline{X''} - b(b(\overline{X})) = -\overline{R(X, \eta')\eta'} - b^2(\overline{X})$$
$$= -R(\overline{X}) - b^2(\overline{X})$$
QED

13

By tracing, we obtain along η that $\theta = \theta(s)$ obeys,

$$\frac{d\theta}{ds} = -\operatorname{Ric}\left(\eta',\eta'\right) - \operatorname{tr} b^2,$$

or,

$$\frac{d\theta}{ds} = -\operatorname{Ric}\left(\eta', \eta'\right) - \sigma^2 - \frac{1}{n-1}\theta^2$$

Raychaudhuri's equation

where σ is the *shear* scalar, $\sigma^2 = \operatorname{tr} \hat{b}^2$, $\hat{b} = b - \frac{1}{n-1}\theta \cdot \operatorname{id}$.

Prop. Let S be a smooth null hypersurface in a spacetime M which obeys the null energy condition,

 $\operatorname{Ric}(X, X) \geq 0 \quad \forall \text{ null vectors } X.$

Then, if the null generators of S are future geodesically complete, S has nonnegative null mean curvature, $\theta \ge 0$.

Proof. Suppose $\theta < 0$ at $p \in S$. Let $s \to \eta(s)$ be the null generator of S passing through $p = \eta(0)$.

Let $b(s) = b_{\eta'(s)}$, and take $\theta = \text{tr } b$. By invariance of sign under scaling, $\theta(0) < 0$.

By Raychaudhuri's equation and the NEC,

$$\frac{d\theta}{ds} \le -\frac{1}{n-1}\theta^2 \,,$$

and hence $\theta < 0$ for s > 0. Dividing through by θ^2 gives,

$$\frac{d}{ds}\left(\frac{1}{\theta}\right) \ge \frac{1}{n-1}\,,$$

which implies $1/\theta \to 0$, i.e., $\theta \to -\infty$ in finite affine parameter time, $\to \leftarrow$.

<u>*Re:*</u> Hawking area theorem; cf., Chruściel, Delay, G. Howard (2001).

Totally geodesic null hypersurfaces.

By def., a smooth null hypersurface S is totally geodesic iff $B \equiv 0$ (or, equivalently, iff $\theta = \sigma = 0$).

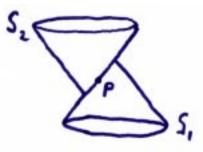
Prop. A null hypersurfaces S is totally geodesic iff geodesics starting tangent to S remain in S.

<u>Ex.</u> Null hyperplanes in Minkowski space, the event horizon in Schwarzschild are totally geodesic.

Maximum Principle for Smooth Null hypersurfaces.

Theorem. Suppose

- S_1 and S_2 are smooth null hypersurfaces in M.
- S_1 , S_2 meet at $p \in M$, with S_2 to the future side of S_1 near p.



• $heta_2 \leq 0 \leq heta_1$.

Then S_1 and S_2 coincide near p, and $\theta_1 = \theta_2 = 0$.

Proof:

 S_1 and S_2 have a common null direction at p. Let Q be a timelike hypersurface in M passing through p and transverse to this direction. Consider the intersections,

 Σ_1 and Σ_2 are *spacelike* hypersurfaces in Q, with Σ_2 to the future of Σ_1 near p.

Express Σ_1 and Σ_2 as graphs over a fixed hypersurface V in Q,

 $\Sigma_1 = \operatorname{graph}(u_1), \qquad \Sigma_2 = \operatorname{graph}(u_2)$

Let,

$$\theta(u_i) = \theta_i|_{\Sigma_i = \operatorname{graph}(u_i)}, \quad i = 1, 2$$

By a computation,

$$\theta(u_i) = H(u_i) + \text{ I.o.t.}$$

where H = mean curvature operator on spacelike graphs over V in Q. Thus θ is a second order quasi-linear elliptic operator.

We have:

- $u_1 \le u_2$, and $u_1(p) = u_2(p)$.
- $\theta(u_2) \leq 0 \leq \theta(u_1)$.

By the strong maximum principle, $u_1 = u_2$.

Thus, S_1 and S_2 agree near p in Q. Now, vary Q to get agreement on a neighborhood.