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1 Purposes

1. Survey the (various) mathematical foundations of gravitational radiation
theory and their relationship to what physicists plan to observe.

2. Identify places where further mathematical investigation might be fruitful.

2 Defining gravitational radiation

e No universal definition of gravitational radiation: cannot invariantly define
local GW content of an arbitrary solution.

Worse than similar situation in EM, because of equivalence principle and
nonlinearity.

Equivalence principle implies no local definition possible in any situation:
must attempt “regional” definition in regions at least as large as a wave-
length. Any definition must be either an approzximation or a limit. Defi-
nitions will generally have to cope with gauge problems.

e Nonlinearity compounds the difficulty of formulating approximations.

Generally, expect to be able to define radiation if the wavelength is shorter
than other relevant lengths and if there is a stationary “background” met-
ric. Helps if there is a preferred frame and/or gauge.

e Since sources of radiation move, there is a close link between the study of
gravitational radiation and the study of equations of motion in GR.



e Physically, definitions should be useful: it should be possible to relate
them to what real detectors expect to see, or to other observable physical
effects (like “radiation reaction”). Detectors work in the weak-field limit,
but sources can be strongly nonlinear.

e A theoretical goal is to fit gravitational radiation into the rest of physics
where possible, e.g. by proving energy conservation in some form. This
has no real practical importance for experiments, but could be important
in attempts to unify GR with the rest of fundamental physics.

3 Mathematical preliminaries

Almost all approximations used for studying gravitational radiation are forms
of perturbation theory, so we begin by defining that. Then we mention a couple
of useful background facts.

e Perturbation theory starts with a full (possibly nonlinear) solution (possi-
bly with sources), and examines small departures from the solution (uni-
formly over the whole manifold, where possible). It is used to prove sta-
bility results (both structural stability and dynamical stability). Pertur-
bations can be taken to any order:
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We can regard this as a family of metrics on a single manifold, or a family

of manifolds. We will return to this issue below. The zero-order metric gfLO,,)

is called the “background” metric; hf}l,) is the first-order perturbation; hfﬁ,)
the second-order; etc. An e-dependent coordinate transformation which

limits to the identity at € = 0 is called a gauge transformation.

e There is an important difference between equations and solutions in per-
turbation theory. It is not enough to derive equations at various orders.
Solutions are defined by auxiliary conditions, such as initial data and/or
boundary /asymptotic data. This data must also fit the approximation
scheme or the solution will not be consistent with the equations. In most
cases, the auxiliary data are essential for the approximation scheme to be
well defined.

e The above equation could be either an asymptotic approximation or the
first few terms of a convergent summation. Here is a simple example:

Physicists use asymptotic approximations in calculations most often, but
sometimes convergence is important. The slow (or non-existent!) conver-
gence of the post-Newtonian approximation is currently a serious handicap
to generating reliable waveforms for inspiral of neutron stars.

Below I shall treat perturbation theory as an asymptotic approximation,
not least because its convergence is generally unknown. I will regard per-
turbation theory as an approximation describing a sequence of solutions.
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Figure 1: Illustration of meaning of asymptotic approximations to sin(z).

First-order perturbations are the tangent space to the sequence at its ori-

gin; second-order perturbations are in the second-tangent space.

e The Sachs-Stewart-Walker theorem on gauge invariance asserts that any
geometric quantity in perturbation theory is gauge-invariant at its lowest
non-zero order. The most commonly encountered example is the Riemann
tensor of linearized theory. The metric tensor is never gauge-invariant be-
cause its unperturbed value is normally non-zero. [R. Sachs, Relativity,
Groups and Topology, (eds B. deWitt and C. DeWitt) New York: Gor-
don and Breach (1964); J.M. Stewart and M. Walker, Proc. Roy. Soc.

(London) A341, 49 (1974).]

e The treatment of radiation in GR often parallels the treatment in EM
where possible. We inherit some nomenclature and ideas from EM. For
example, the near zone is the region containing the source and extending
out to a distance of order one wavelength (if such a region exists). Similarly
the far zone or wave zone is the region extending from a distance of a few
wavelengths to infinity, provided it is smooth on the scale of a wavelength.

e Radiation reaction is a central concept and the main aim of many calcu-
lations. Actually, it is a misnomer. It represents the self-field forces on
a dynamical system. Because of energy conservation, any energy lost by
the system turns up as radiated energy far away, but there is no sense in
which the system is reacting to this radiation: the self-interaction occurs
immediately, there is no delay to discover what is happening in the wave
zone. Importantly, there could in principle be conservative but non-trivial
self-interaction forces that would not put energy into radiation but would
affect the details of the radiated waveform. Here is an example from EM

to illustrate the mechanics of how radiation reaction forces arise.

— First consider a single charge ¢ following an arc of a circular orbit of

radius 7 with angular velocity w, accelerated by a non-EM force.
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Figure 2: The sequence of metrics for perturbation theory seen as a sequence
of manifolds parametrized by €. This has the structure of a fiber bundle whose
fibers are the manifolds. Shown here are 2D spatial sections from each of the
manifolds, which are of course 4-dimensional.

Figure 3: An accelerated charge moving on the arc of a circle. This will radiate
dipole radiation.



Figure 4: Two identical charges moving on the same circle at diametrically
opposite points. This system has zero dipole moment and will radiate only
quadrupole radiation.

We know it will radiate dipole radiation to lowest order in its velocity,
and it will experience the dipolar radiation reaction force
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This force comes from the self-field of the accelerated charge, and it
can be derived in a local manner, taking a limit of a small charged
sphere as its size shrinks to zero. One sees clearly that the force
comes from the retarded interactions of parts of the sphere with one
another.

— Now put another identical charge on the same circle, diametrically
opposite the first, and moving with the same angular velocity. This
system has zero dipole moment, so it cannot emit dipole radiation.

— Yet the motion of each individual charge is the same as before, so
each charge acts on itself with the dipole “reaction” force: this force
is still there despite the absence of dipole radiation! But clearly this
force must be cancelled by something else, because otherwise energy
would not balance. The cancellation comes from the retarded field of
the other charge: each charge exerts a force +§q2dj /c® on the other at
dipole order, which can be found by expanding the expression for the
retarded electric field of one point charge at the location of the other
in powers of the velocity wr/c. What is left, at the next nontrivial



order (¢?), is a residual quadrupolar “reaction” force that is identical
on both charges and which accounts for the energy radiated in electric
quadrupole radiation.

— This shows that the “reaction” forces arise by self-interactions and
take place on the time-scale of the light-crossing time of the system.
There is no reason to suppose, especially in GR, that all such self-
forces are linked to radiation: they may make orbits precess or do
other conservative things.

4 A catalog of approaches to defining gravita-
tional waves

Here is a list of six variations of perturbation theory and one non-perturbative
method that are used in different circumstances to define gravitational waves
and, in some cases, to study their sources. Most of them are normally valid in
restricted regions of spacetime and under other conditions as well.

1. Simplest case is linearized gravity. This is a perturbation theory away from
flat spacetime, taken to just first order. Here one finds the basic properties
of waves: speed of light, polarisation. The choice of gauge is crucial to
simplifying it: TT gauge is allowed. Note that Riemann tensor is gauge-
invariant (Sachs-Stewart-Walker) so that one can use the Riemann tensor
to describe the radiation invariantly in any region of spacetime where
linearised gravity is valid. The approach is valid if () is small and h(?)
negligible. The source of the field must obey special-relativistic equations
of motion: there is no self-gravity, no self-interaction. Therefore linearized
theory cannot handle energy. It was first investigated by Einstein, who
derived the quadrupole formula (error of factor 2 corrected by Eddington).

2. Test matter in a given curved background metric. The matter does not
create a field at lowest order. This is perturbation theory where the per-
turbation is a new matter field rather than an alteration of the one that
creates the zero-order metric. This is normally used in at least two cases,
for detectors and for particle orbits in external fields (geodesics). It is
actually quite good for detectors, since the self-field of a bar detector, for
example, is of order 1072°. For particle orbits, it is often iterated to the
next level, where the self-field of the particle is taken into account. (See
post-test approximation, below)

3. The post-linear or post-Minkowskian (PM) approximation simply iterates
the field equations in small amplitude beyond linearised theory. So it
is a general perturbation theory with special relativity as the zero-order
metric. It is valid for weak fields, but it does treat energy. Leads to
pseudo-tensors. However, the gauge is free and energy is gauge-dependent
because of equivalence principle. Isaacson stress-energy tensor is derived



in this approximation, and it shows how energy can be localizedd to within
a region comparable to a wavelength:
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where indices are raised with the Minkowski metric and angle brackets ()
denote an average over the localization region. This stress-energy is the
effective source of the smooth non-zero curvature that appears at second
order:

2
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The PM approximation can also be used to investigate the exterior field of
a source, far enough away that the field is weak. This has been done in a
systematic way by Thorne. [Thorne, K.S., “Multipole expansions of grav-
itational radiation” Rev. Mod. Phys. 52 299-340 (1980).] Damour has
used the PM approximation as the starting point for his post-Newtonian
work.

. The post-Newtonian (PN) approximation is the best-studied and most-
used of all the ones on our list. It is valid for slow motion and weak fields,
linked in such a way that
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This can be seen as a refinement of the PM approximation, but it creates
a re-ordering of terms because some parts of the stress-energy tensor are
linked to the nonlinearity by the above equation. [Recent review: Luc
Blanchet, ” Gravitational Radiation from Post-Newtonian Sources and In-
spiralling Compact Binaries”, Living Rev. Relativity 5, (2002), 3. [Online
article]: cited on 01 August 2002, http://www.livingreviews.org/Articles/-
Volume5/2002-3blanchet/] A number of remarks are in order:

e In the PN approximation, the wave operator degenerates to the
Laplacian, so strictly speaking this approximation cannot represent
gravitational radiation. It is only a description of the near zone of a
gravitational-wave source.

e The PN approximation is incomplete without a boundary condition
or matching or extension to wave zone, and when these are applied
correctly then the near-zone equations contain ”radiation reaction”.

e PN orders are labeled 1PN, 2PN, 2.5PN, etc, marking powers of ®
or v2 beyond the Newtonian order. But how can an approximation
method have half-order steps!? The answer goes back to the difference
between equations and solutions mentioned above: the dynamical
equations only have integer steps, but the solutions have half-steps
because they incorporate radiation conditions that are not natural
to the PN approximation.



e The zero-order limiting solution is often thought of as Newtonian
theory expressed geometrically, rather than SR, but this is not the
only way to construct the perturbation theory. (See later.)

e The PN approximation is our main tool for calculating the gener-
ation of gravitational waves in realistic sources. It does not offer
a definition of energy in radiation (since it does not represent ra-
diation), but it does treat energy of self-field as source of field at
higher orders, and does give radiation-reaction forces when han-
dled carefully. Agreement between PN calculations and radio ob-
servations of the orbital decay of the Hulse-Taylor binary pulsar
system provide our best evidence for the correctness of the Ein-
stein model of gravitational radiation, and underpinned the Nobel
Prize won by Hulse and Taylor in 1993. [Will, C.M., "The Con-
frontation between General Relativity and Experiment”, Living Rev.
Relativity 4, (2001), 4. [Online article]: cited on 01 August 2002
http://www livingreviews.org/Articles/Volume4 /2001-4will /]

e Importantly, the PN approximation shows that the Newtonian grav-
itational potential energy contributes to the effective mass-energy of
radiation source, so the nonlinearity of GR respects the equivalence
principle.

e There are several PN varieties, differing in two respects. One is
the way the matching or extension to the wave zone is done. The
other is in how compact sources are handled. Because often one is
not interested in the interior details of the stars in a binary system,
the PN approximation is often formulated using delta-function point
particles. These are difficult in GR, especially due to nonlinearity.
Different approaches “regularize” these singularities in different ways.
The only real test of their validity is the consistency among the an-
swers obtained by different methods. This is another incompleteness
of many PN schemes: the representation of the source interior in a
regular way. This is an unnecessary incompleteness, as I will explain
below.

5. The post-test (PT) approximation allows the self-field of a test particle to
be taken into account at higher orders to get the corrected motion of the
particle. This differs from PN and PM because the zero-order solution is a
full nonlinear solution of GR. It is basically a restricted version of nonlinear
perturbation theory. For the particle-orbit problem, this self-interaction
leads to "radiation reaction”. This approach is not well-developed yet:
we do not yet have any way of calculating the self-forces on a particle
orbiting in the Kerr metric, for example. A small number of people are
working very hard on it, because it is regarded as essential if LISA is to
detect signals from gravitational captures of stellar-mass black holes by
supermassive black holes. The LISA International Science Team (LIST)
last year identified this as a priority problem for scientists (and funding
agencies!) wishing to support the LISA project.



6. Asymptotic null infinity is the first place we think of when we want a
good definition of radiation, but I have saved it for last because it makes
an interesting comparison with the other schemes. Bondi was the first to
give a good definition of radiation in the far field, following the outgoing
radiation to what we now call asymptotic null infinity. But the concept of
null infinity came later, introduced by Penrose in order to make Bondi’s
ideas more tangible. Some remarks are appropriate here:

e The historical importance of this cannot be overestimated. It finally
put gravitational radiation on firm ground, with an invariant local
energy conservation theorem, that the apparent mass of an isolated
system decreased with the energy lost to gravitational radiation.

e However, null infninity does not tell us anything directly about sources.
Basically it is a clever and rigorous limit of the exterior post-Minkowski
approximation. It is therefore incomplete in the complementary way
to that of the PN approach.

e The reason that an invariant energy is possible at infinity is that
there is a preferred observer, who in fact defines infinity, and who is
flat (asymptotically). Moreover, this observer is infinitely large, so
that grad is short wavelength and can be localized. This is the one
place where we can define a universally agreed energy flux carried by
gravitational waves.

e Null infinity is unfortunately less connected than the other schemes to
practical computations of sources. While it provides a reference for
ideas, it has proved hard to link it, for example, to the PN calculation
to set a no-incoming-radiation condition.

e From a physical point of view, null infinity is very far away. A mea-
sure of how far one has to get from a source to be “near” infinity is
to consider the divergence of the true curved-space light-cones from
their flat-space approximations, which wind up at spatial infinity.
Martin Walker first pointed out the enormous distance required to
separate these cones by just one wavelength or period of the gravita-
tional wave, a reasonable length scale for a radiation problem. The
separation is something like 2M In(r/M). Setting this equal to A
for the Hulse-Taylor pulsar, we solve for r and find that it is a bit
more than 101" km! This is unimaginably bigger than the observable
Universe, whose radius is a mere 1023 km.

e This highlights the true physical problem with null infinity: radia-
tion leaving a source encounters all kinds of problems — black holes,
lenses, caustics — when it travels only a short fraction of the size
of the Galaxy; by the time real outgoing light cones reach anywhere
near asymptotic null infinity, they do not resemble their mathemat-
ical idealization at all. What physicists should have as an outer
wave solution region, to complete the PN scheme, is something much
closer, something that could reasonably fit between the Hulse-Taylor



binary and its nearest neighboring star in the Galaxy. This is where
the physicists’ “far zone” lives. It might start at, say, 10 times the
wavelength, which would be about 10'° km, or 0.001 pc. I will pro-
pose below a mathematical construction for this asymptotic zone.

7. Numerical approximations are the only non-perturbative approach on my
list. They are typically based on approximation by use of basis functions.
Here the small parameter is the resolution scale. Orders of approximation
are simply refinements of resolution. Usual finite-difference schemes are
approximations using piecewise continuous polynomials. Other schemes
that use global basis functions, e.g. orthogonal polynomials, have been
used in relativity by the Paris group to good effect. The simplest appli-
cations of numerical methods to gravitational wave problems have been
local, solving a bounded region of spacetime that includes the source and
some approximation to the far zone. A more elegant and potentially pow-
erful scheme is to incorporate conformal techniques to bring null infinity
to a finite point on the grid, then can incorporate infinity into the com-
putational domain (Friedrich, Husa, Lechner, Frauendiener all attending
this meeting). Interestingly, when the system is as highly relativistic as a
two-black-hole collision, our measure of how far away null infinity is be-
comes much more reasonable, perhaps as small at 101° km. The far zone
in this case starts much closer, perhaps at 10* km, but the divergence of
the light cones may already be significant before the cones reach any other
stars.

5 Stitching together local approaches in differ-
ent regions

Given the number of different approaches on my list, it is perhaps remarkable
that we all seem to agree that they all deal with the same thing, gravitational ra-
diation, in one way or another. Clearly some are derived from others, but some
are also incomplete. Since PN and the external PM are incomplete, each need-
ing to be matched to the other, there have been many attempts to unite them.
There are simple (and overly simple!) outgoing wave boundary conditions in
numerical relativity, matched asymptotic expansions and other matching tech-
niques in PN and PM approaches, and attempts to match to the Bondi system.
What is needed is a more unified view of the whole spacetime and how the

different parts fit together. I propose one here. [See B.F. Schutz, “Motion and
Radiation in General Relativity”, in Bressan, O., Castagnino, M., Hamity, V.,
eds., Relativity, Supersymmetry, and Cosmology, (World Scientific, Singapore,
1985), pp. 3-80.] Consider a sequence of spacetimes, as before, only this time
drawn with their time-axes, and showing a sketch of the binary orbit of two
stars. The systems are constructed to have a Newtonian limit in the following
way: let the density of the stars decrease uniformly toward zero (off the left of
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our picture) while the stars remain at the same orbital radius. This requires
that the velocities decrease, and it is easy to see that the relation between the
density-dependent ® and v? is correct. Therefore, as one proceeds along the se-
quence from right to left, in the direction of decreasing density, the orbital time
takes longer. I have drawn a map between the spacetimes connecting events at
similar spatial positions and proper times.

The limit of this sequence of manifolds is Minkowski spacetime, since the
density goes to zero.

But the Newtonian manifold is there. To see where, construct a different
map, which maps times of fixed number of orbital periods, and spatial positions
that preserve proper distance. Then the orbits are mapped onto one another,
and each fiber looks the same. Rescaling the time-coordinate rescales the density
so that it becomes constant on this map. The metric, however, is distorted in
these coordinates because of the time-rescaling, and essentially the speed of
light is sent to infinity. The limiting manifold (technically, the tangent space
to the map at the far left end, i.e. at the Minkowski spacetime element of the
sequence) is the Newtonian manifold.

We can construct even more interesting maps between fibers. Consider the
next figure, where the map is drawn connecting times that are at similar periods
of the orbit and thus of the gravitational waves, just as in the Newtonian map.
But in this case, we re-adjust the spatial map to preserve the speed of light, so
the unit of spatial distance is the wavelength of the gravitational wave. In these
units, the orbits shrink. The end point of this map (again, the tangent space
to the flow of the map) is a Minkowski spacetime with linearized gravitational
waves and a line cut out at the center where the binary system is.

This is my proposal for the wave zone associated with this sequence of solu-
tions. It is a 4-dimensional manifold, not just a boundary. Recall that all these
maps thread through the same sequence, just looking at it in different ways.
Using the waves as our distance standard, the Newtonian limit leaves behind
just the radiation far from the system.

This picture has computational power. It is possible to show that the Isaac-
son energy flux, integrated over a sphere around the point-like source region
in this limiting manifold, matches the expected quadrupole radiation. More
interesting, the same is true for the integrated angular momentum flux. In this
limiting Minkowskian wave zone, angular momentum is perfectly well defined.
The supertranslation ambiguity arises at a higher order. [E. Nahmad-Achar,
“A new derivation of the quadrupole formula for angular momentum”, J. Math.
Phys., 30, 1009-1012 (1989).]

This idea of maps along the sequence can also solve the other incompleteness
problem of the PN approximations, the problem of point particles. Construct a
sequence in which the source stars decrease in mass as in the original sequence,
but also decrease in size so that M/R remains constant and is bounded be-
low 1/2. They therefore approach point-like size but remain regular regions of
spacetime. By introducing a further map that scales as M and therefore exam-
ines the details of the interior, one can show that the interior solutions obey the
Einstein equations for an isolated body in the limit. But they also continue to
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"Proper time" map between manifolds
(density scales, orbital radius fixed)
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Figure 5: Three spacetimes from a sequence of spacetimes that has a Newtonian
limit. The limiting spacetime is off the left of the illustration. Shown are sections
including the time and one spatial direction, with the orbits of the two stars
projected onto the sections. The sequence is arranged so that the densities of
the stars decreases to the left, while their orbits remain in the same locations.
The orbital period lengthens to the left. The horizontal lines are maps through
the fiber bundle that identify points in the different manifolds with one another.
These are drawn to identify points at the same proper time and distance. At
the left end of the sequence is flat spacetime.
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"Wave time" map between manifolds
(orbital radius scales, orbital period fixed)
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Figure 6: Three spacetimes from the same sequence of spacetimes as in the
previous illustration, but with a different map identifying points in the different
manifolds. The horizontal lines are maps that identify points with the same
number of orbital periods in time and with the same number of gravitational
wavelengths in space. This shrinks the spatial orbits, so that at the left end of
the sequence, the tangent to the map is a flat spacetime with one line removed
(the limit of the orbits) that contains the gravitational waves emitted by the
system.

13



orbit one another in a Newtonian way. In this way, Futamase showed that two
neutron stars will follow Newtonian orbits despite their strong internal gravity.
[T. Futamase, Phys. Rev. D, 32, 2566 (1985).]
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