Asymptotically Flat Initial Data with Prescribed Regularity at Infinity

S. Dain

Max-Planck-Institut für Gravitationsphysik Albert-Einstein-Institut, Golm.

Cargse July 29 - August 10, 2002

Initial data set for the Einstein equation

An initial data set for the Einstein vacuum equations is a triplet $\left(\widetilde{S}, \widetilde{h}_{a b}, \widetilde{\Psi}_{a b}\right)$ where
$-\widetilde{S}$: 3-dimensional manifold.
$-\widetilde{h}_{a b}:$ Riemannian metric.
$-\widetilde{\Psi}_{a b}$: symmetric 2-tensor.

Which satisfy the constraint equations on \widetilde{S}

$$
\begin{gathered}
\tilde{D}^{a} \tilde{\Psi}_{a b}-\tilde{D}_{a} \tilde{\Psi}=0 \\
\widetilde{R}+\widetilde{\Psi}^{2}-\widetilde{\Psi}_{a b} \tilde{\Psi}^{a b}=0
\end{gathered}
$$

where
$-\widetilde{D}_{a}:$ covariant derivative of $\tilde{h}_{a b}$.
$-\widetilde{R}:$ Ricci scalar of $\tilde{h}_{a b}$.
$-\widetilde{\Psi}=\tilde{h}^{a b} \widetilde{\Psi}_{a b}$.

Asymptotically flat initial data set

We say that an initial data set is asymptotically flat if the complement of a compact set in \tilde{S} is diffeomorphic to the complement of a ball in \mathbb{R}^{3}, and there exists a coordinate system \widetilde{x}^{j} in a neighborhood of infinity such that, in this coordinates,

$$
\begin{gathered}
\tilde{h}_{i j}=\left(1+\frac{2 m}{\tilde{r}}\right) \delta_{i j}+O\left(\tilde{r}^{-2}\right), \\
\tilde{\Psi}_{i j}=O\left(\tilde{r}^{-2}\right),
\end{gathered}
$$

as

$$
\tilde{r}=\left(\sum_{j=1}^{3}\left(\tilde{x}^{j}\right)^{2}\right)^{1 / 2} \rightarrow \infty .
$$

Where the constant m is the mass of the data, and $\delta_{i j}$ is the flat metric.

The Problem we want to solve

We want to consider the problem of the existence of a class of asymptotically flat initial data for which the higher order terms of $\tilde{h}_{a b}$ and $\tilde{\Psi}_{a b}$ have an asymptotic expansion in powers of \tilde{r} of the form

$$
\begin{gathered}
\tilde{h}_{i j} \sim\left(1+\frac{2 m}{\tilde{r}}\right) \delta_{i j}+\sum_{k \geq 2} \frac{\tilde{h}_{i j}^{k}}{\tilde{r}^{k}} \\
\widetilde{\Psi}_{i j} \sim \sum_{k \geq 2} \frac{\tilde{\Psi}_{i j}^{k}}{\tilde{r}^{k}}
\end{gathered}
$$

where $\widetilde{h}_{i j}^{k}$ and $\widetilde{\Psi}_{i j}^{k}$ are smooth functions of \tilde{x}^{j} / r.

Maximal initial data

If we assume that

$$
\tilde{\Psi}=0
$$

then the constraint equations reduce to

$$
\begin{gathered}
\tilde{D}^{a} \tilde{\Psi}_{a b}=0 \\
\widetilde{R}-\widetilde{\Psi}_{a b} \tilde{\Psi}^{a b}=0
\end{gathered}
$$

After a conformal rescaling

$$
\tilde{h}_{a b}=\theta^{4} h_{a b}, \quad \tilde{\Psi}_{a b}=\theta^{-2} \Psi_{a b}
$$

we have

$$
\begin{gather*}
D^{a} \Psi_{a b}=0 \text { on } \widetilde{S} \tag{1}\\
\left(D_{b} D^{b}-\frac{1}{8} R\right) \theta=-\frac{1}{8} \Psi_{a b} \Psi^{a b} \theta^{-7} \text { on } \widetilde{S} . \tag{2}
\end{gather*}
$$

Conformal compactification of the initial data

Let S be the compact manifold defined by $S=\widetilde{S} \cup\{i\}$, and define coordinates near the point i by the inversion

$$
x^{i}=\frac{\tilde{x}^{i}}{\tilde{r}^{2}}, \quad r=\left(\sum_{j=1}^{3}\left(x^{j}\right)^{2}\right)^{1 / 2}=\frac{1}{\tilde{r}}
$$

Then the asymptotically flat condition for the initial data are

$$
\begin{gather*}
\Psi_{a b}=O\left(r^{-4}\right) \quad \text { as } \quad r \rightarrow 0 \tag{3}\\
\lim _{r \rightarrow 0} r \theta=1 \tag{4}
\end{gather*}
$$

Our result

B_{a} : small ball center at i

Definition 1

$$
E^{\infty}\left(B_{a}\right)=\left\{f=f_{1}+r f_{2}: f_{1}, f_{2} \in C^{\infty}\left(B_{a}\right)\right\}
$$

Theorem 1 Let $h_{a b}$ be a smooth metric on S with positive Ricci scalar R. Assume that $\Psi_{a b}$ is smooth in \widetilde{S} and satisfies on B_{a}

$$
\begin{equation*}
r^{8} \Psi_{a b} \Psi^{a b} \in E^{\infty}\left(B_{a}\right) \tag{5}
\end{equation*}
$$

Then there exists on \tilde{S} a unique solution θ of equation (2), which is positive, satisfies (4), and has in B_{a} the form

$$
\theta=\frac{\hat{\theta}}{r}, \quad \hat{\theta} \in E^{\infty}\left(B_{a}\right), \quad \widehat{\theta}(i)=1 .
$$

General solutions of $\partial_{a} \Psi^{a b}=0$

($n^{a}, m^{a}, \bar{m}^{a}$): orthonormal, complex, tetrad.

$$
\begin{gathered}
\xi=\frac{1}{2} r^{3} \Psi_{a b} n^{a} n^{b}, \quad \eta_{1}=\sqrt{2} r^{3} \Psi_{a b} n^{a} m^{b}, \\
\mu_{2}=r^{3} \Psi_{a b} m^{a} m^{b} .
\end{gathered}
$$

λ arbitrary complex function and $\lambda_{2}=\check{\delta}^{2} \lambda$.
Then, the general solution of $\partial_{a} \Psi^{a b}=0$ is given by

$$
\begin{aligned}
\xi & =\bar{ठ}^{2} \lambda_{2}^{R}+A+r Q+\frac{1}{r} P, \\
\eta_{1} & =-2 r \partial_{r} \bar{\partial} \lambda_{2}^{R}+\bar{\varnothing} \lambda_{2}^{I}+r ð Q-\frac{1}{r} \partial P+i ð J, \\
\mu_{2} & =2 r \partial_{r}\left(r \partial_{r} \lambda_{2}^{R}\right)-2 \lambda_{2}^{R}+\partial \bar{\delta} \lambda_{2}^{R}-r \partial_{r} \lambda_{2}^{I} .
\end{aligned}
$$

where

$$
P=\frac{3}{2} P^{a} n_{a}, \quad Q=\frac{3}{2} Q^{a} n_{a}, \quad J=3 J^{a} n_{a},
$$

and A, P^{a}, Q^{a}, J^{a} are arbitrary constants.

$$
\begin{aligned}
\Psi_{P}^{a b} & =\frac{3}{2 r^{4}}\left(-P^{a} n^{b}-P^{b} n^{a}-\left(\delta^{a b}-5 n^{a} n^{b}\right) P^{c} n_{c}\right), \\
\Psi_{J}^{a b} & =\frac{3}{r^{3}}\left(n^{a} \epsilon^{b c d} J_{c} n_{d}+n^{b} \epsilon^{a c d} J_{c} n_{d}\right), \\
\Psi_{A}^{a b} & =\frac{A}{r^{3}}\left(3 n^{a} n^{b}-\delta^{a b}\right), \\
\Psi_{Q}^{a b} & =\frac{3}{2 r^{2}}\left(Q^{a} n^{b}+Q^{b} n^{a}-\left(\delta^{a b}-n^{a} n^{b}\right) Q^{c} n_{c}\right)
\end{aligned}
$$

λ gives the "quadrupolar" of $\Psi^{a b}$, it doesn't contribute to the linear or angular momentum of the data.

Theorem 2 If $r \lambda \in E^{\infty}\left(B_{a}\right)$ and $P^{a}=0$, then $r^{8} \Psi_{a b} \Psi^{a b} \in E^{\infty}\left(B_{a}\right)$.

