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1. The question:

— A subquestion: Homogeneous (non-proper) space-

times

— A super-question: Diff (M )-action on the space of

Lorentz metrics

— Some motivations

— Conformal case

2.Examples:

— Warped products

• Non-compact cases: Constant curvature spacetimes

• Compact cases:

— Flat cases: tori, SOL

— SL(2, R) = AdS3,

— Warped Heisenberg groups,

— Non-homogeneous examples

3. Results: compact case (answer to the sub-

question...)

4. Results: non-compact case (partial answers)

5. Results:: Super-question (the 2-dimensionnal

case
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The Question:

(M, g) a Lorentz manifold,

G = Isom(M, g)

Question When is the action of G on M essential?

⇐⇒
When the G-action can not preserve a Riemanniann

metric on M?

⇐⇒
When is the action of G on M non proper ?

————————-

The G action is proper if: ∀ K ⊂ M compact, the set

GK = {g ∈ G, gK ∩K 	= ∅}

is compact

————————–

The compact case:

When is the isometry group of a compact Lorentz

manifold is non-compact?
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The sub-question:

Homogeneous space: M = G/H , G a Lie group,

and H a closed subgroup of G.

– We suppose everywhere that G acts faithfully on M ,

i.e. we can not simplify G/H to a smaller G′/H ′

– G acts on the left on M : (g, xH) ∈ G × M →
(gx)H ∈ M

– This action preserves some “rigid geometric struc-

ture”.

– The homogeneous space is of Riemannian type (resp.

Lorentzian...) if the G-action preserves a Riemannian

(resp. Lorentz...) metric on M .

– Stabilizer (1.H) = Ad(H) ⊂ Ad(G) ⊂ GL(G), G =

Lie algebra of G

Remark The G-action is of Riemannian type ⇐⇒
the action is proper ⇐⇒ (Ad(H)) is compact

(in general ⇐⇒ H is compact)

Sub-question Classify M = G/H of Lorentzian

type (i.e. the G-action preserves some Lorentz metric

on G/H), with H non compact.
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The super-question: Diff(M )-action on the space

of Lorentz metrics

Diff k(M ) acts onLork−1(M ) = space ofCk−1 Lorentz

metrics on M .

Endow them with the Banach or Frechet topology (for

k = ∞)

— It is known thatDiff (M ) acts properly onRie(M )

(space of Riemannian metrics).

— The quotient Riem(M )/Diff(M ) is Hausdorff =

modular space.

— A function on M is a Riemannian invariant.

QUESTION: When is theDiff (M )-action onLor(M )

proper?

— If g ∈ Lor(M ), Stabilizer(g) = Isom(g)

— The Diff(M )-action proper =⇒ ∀ g ∈ Lor(M ),

Isom(g) is proper. (i.e. the super-question =⇒ the ques-

tion).

– Gromov: the difficulty in the global studying of

Lorentz manifolds lies in the fact thatLor(M )/Diff(M )

does not exist (as a Hausdorff space).
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Some motivations:

1. For the sub-question:

• The homogeneous Riemannian problem (trivial for

our talk here):

• We know very few about non-Riemannian homoge-

neous space.

– The interest of the Lorentz case: it is the easiest

Non-Riemannian problem.

• The homogeneous compact Lorentz problem: Find

G a Lie group, and H a closed Lie subgroup of G, such:

C1. The action of G on G/H preserves a Lorentz

metric.

C2. M = G/H is compact.

Fact

1. If H is discrete, then:

– C1 is equivalent to that the Lie algebra G has an

Ad(H)- Lorentz scalar product.

– C2 means (by definition) that H is a co-compact

lattice in G.

Explanation: Left translate toG a Lorentz scalar prod-

uct on G which is Ad(H)-invariant. The Lorentz metric

on G is: G-left-invariant, and H-right invariant. There-

fore, it passes to a G-invariant Lorentz metric on G/H .

(exercise: Where have we used discreetness of H?)
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For the question

Conformal groups of Riemannian manifolds:

(M, g) Riemannian manifold,

A priori, Conf(M, g) does not preserve a metric.

Lichnerowitch conjecture solved by Lelong-Ferrand

and Obatta: This happens only for the usual spheres

and Euclidean spaces.

Remark There are analogous conjectures in geomet-

ric dynamics...
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Examples: general constructions

• Products

N Lorentz, with Isom(N ) essential, =⇒ M = N × L

has an essential isometry group.

• Local products:

Ñ Lorentz M = Ñ × L̃/Γ, where Γ is a non split

subgroup of Isom(L̃) × Isom(L̃)

If the centralizer of Γ acts non-properly on Ñ × L̃,

then M is essential.

• Same examples for the homogeneous Lorentz prob-

lem.

• The warped product construction (generalization of

direct products):

(L, h) Riemannian manifolds

(N, g) Lorentz

w : L → R+ a (warping) function.

The warped product M = L×w N , is the topological

product L×N , endowed with the metric h
⊕
wg.

• If f : N → N , is an isometry then, the trivial

extension: f̄ : (x, y) ∈ L×N → (x, f (y)) ∈ L×N , is

an isometry of L×w N

(In particular, in the class of Lorentz manifolds with large isometry

groups, one can perform warped products by (any) Riemannian manifolds.)

8



   

• Examples: compact spaces: 1. Flat case:

Flat tori = (Rn, g)/Zn,

g a Lorentz scalar product on Rn

Isom (T n, g) = T n
� O(g, Z),

O(g, Z) = O(g) ∩GL(n,Z),

O(g) = the orthogonal group of g (∼ O(1, n− 1))

• Dimension 2 (Avez):

A ∈ SL(2, Z) hyperbolic,

ωu (resp. ωs) linear forms on R2 defining, the stable

and unstable foliations of A.

g = ωuωs.

A preserves g

Isom(T 2, g) = (essentially) T 2
�Z, Z generated by A.

• Dimension > 2

Harisch-Chandra Borel: if g is rational, then O(g, Z)

is a lattice in O(g). (in particular O(g, Z) is isomorphic to the fun-

damental group of a finite volume hyperbolic manifold)

• Suspension T 3
A

The suspension of A gives a flat manifold with an iso-

metric flow which is Anosov (chaotic)

T 3
A = SOL/Γ, SOL the 3-dimensional unimodular

solvable non-nilpotent group.
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• Examples: compact spaces: 2. Local AdS3

space

G = SL(2,R)

$ The Killing form k on the Lie algebra sl(2, R) has

signature − + + (may be −− +, in this case, consider −k )

– It is Ad-invariant, in particular Ad(H)-invariant for

any co-compact lattice.

Thus For any co-compact lattice H ⊂ SL(2,R),

SL(2,R/H is a homogenous compact spacetime

• Alternative explanation of the Fact above:

Right translate k , and get a right invariant Lorentz

metric on G. Thus, it passes to right quotients G/H .

-G acts by the left G/H

– This action is isometric, since, also the left action

on G on itself preserves the Lorentz metric, because k is

bi-invariant.

Remark: SL(2,R)/H is (up to 2-cover) to unit tan-

gent bundle of the hyperbolic surface H2/H .
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•Examples: compact case: 3. Warped Heisen-

berg groups

A family of sympathetic groups: Warped Heisenberg

groups: family of solvable groups looking like SL(2, R):

• they admit Lorentz bi-invariant Lorentz metrics, i.e.

their Lie algebra admit Ad-invariant Lorentz scalar prod-

ucts ( 	= the Killing form, which is degenerate).

• they have co-compact lattices!

$ G is a warped Heisenberg group, H a lattice

$ As in the case of SL(2,R),

M = G/H is a compact homogeneous spacetime,

where H is a cocompact lattice

(co-compact is superfluous, since any lattice in a solv-

able Lie group is co-compact).

——————————————
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• The simplest example of warped Heisenberg

groups: dimension 4 (known as oscillator group, Diamond

group...)

The semi-direct product G = S1
� Heis

Heis = Heisenberg group (of dimension 3):

Heis = {




1 x z

0 1 y

0 0 1


 , x, y, z ∈ R}

Heis is characterized essentially, by the existence of a

non-split exact sequence:

1 → R → Heis → R2 → 1

———

G = S1
� Heis is defined by:

– S1 acts trivially on the center R, and acts by rotation

on R2

—–

• Also G is characterized by being a non-trivial central

extension of Ec by S1,

Ec = group of Euclidean isometries of the plane.

1 → S1 → G → Ec → 1
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Generalization: canonical warped Heisen-

berg groups

• Recall the construction of Heisenberg algebras: HEd

(dim = 2d + 1)

R ⊕ Cd, with basis Z, e1, . . . , ed

The only non-vanishing brackets are: [ek, iek] = Z.

(here i =
√
−1)

Equivalently,

[X,Y ] = ω(X,Y )Z.

ω symplectic form, i.e. ω(X,Y ) =< X, iY >0,

<,>0 hermitian product

• Canonical warped Heisenberg algebras

Add an exterior element t, such that:

[t, ek] = iek, [t, iek] = −ek, and [t, Z] = 0

• Scalar product

<,>

Endow Cd with its hermitian <,>0

Decree Cd is orthogonal to {t, Z}.
< t, t >=< Z,Z >= 0 and < t, Z >= 1.

• <,> is a Lorentz scalar product which is Ad(HE t
d)-

invariant! i.e. ∀u ∈ HE t
d u, adu is antisymmetric with

respect to <,>
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exercise: Why this doesn’t work for the Heisenberg algebras themselves?

• Consider G̃ = H̃etd the simply connected Lie group

generated by HE t
d

• H̃etd is a semi-direct product of R by Hed:

- The action of R on the center is trivial.

- The action on Cd is via multiplication by exp is.

- This is in fact an action of S1

• Consider G = Hetd = H̃etd/Z = S1
� Hed

• Any lattice in the Heisenberg group Hed is a lattice

in Hetd.

- example of a lattice in He1:

HeisZ = {




1 x z

0 1 y

0 0 1


 , x, y, z ∈ Z}
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General construction of warped Heisenberg

groups:

- Consider a semi-direct product R � Hed, where R

acts on Cd via:

s → exp(2πsA) ∈ U (d) such that:

� exp(2πA) = 1,

� A diagonalizable, λ1, . . . , λd ∈ Z

� The λi have the same sign.

Thus, the action of R factors via an action of S1

– The semi-direct product G = S1
� Hed is called a

warped Heisenberg group.

– The conditions guaranty that G has a bi-invariant

Lorentz metric.

– G has lattices

– Any quotient G/H , H a lattice, is a compact homo-

geneous spacetime.

—————
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Some remarks:

1. recall that the Lorentz scalar product was defined

by: Cd is endowed with its hermitian metric<,>0 and is

orthogonal to the plane {t, Z}, < t, t >=< Z,Z >= 0

and < t, Z >= 1.

– One may take < t, t >= Constant 	= 0, and multi-

ply the other products by any constant (	= 0), and gets

another bi-invariant Lorentz metric.

– However, up to automorphism, there exists only one

bi-invariant Lorentz metric on a warped Heisenberg group..

-In particular a metric is isometric to any multiple of

itself. This follows from existence of homotheties. (This

is true for Rn but not for SL(2,R).

— Warped Heisenberg groups are (locally) symmetric

Lorentz spaces of non reductive type.

– They have non-reductive holonomy, i.e. they have

a codimension 1 parallel foliation which has no supple-

mentary parallel direction field.

– The Ricci curvature of a warped Heisenberg group

equals its Killing form (up to constant).
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Historical comments

• Het1 the 4-dimensional Heisenberg group is known

as:

– Diamond group, in Representation Theory

– Oscillator group in Representation Theory and quan-

tum mechanics

•The bi-invariant Lorentz metrics were known to medina-

Revoy, and “partially” to Zimmer and Gromov.

– This seems folkloric in relativistic literature: some

gravitational plane waves spacetimes...

– Witten-Nappi: “a WZW model based on a non semi-

simple group” (1993)

————–

Justification of the name “oscillator group”:

The Lie algebra HE t
1 has the following representation

in the algebra of operators of the Hilbert space E =

L2(R):

Z → 1 = (Identity)

X → q (position)

Y → p (impulsion)

t → p2 + q2 (energy),

where the operators q and p are given by:

q(f ) = xf (f ∈ L2(R))

p(f ) = ∂f
∂x
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— To show that this gives a homomorphism, one ver-

ifies in particular: [q, p] = 1, which is the Heisenberg

uncertainty principle.

p2 + q2 is the energy of the harmonic oscillator, which

explains the origin of the terminology.
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Sub-question: Classification of compact homo-

geneous spacetimes: Part I: structure of their

isometry group

Theorem 1 Let M = G/H be a compact homoge-

neous Lorentz manifold.

Then, up to compact objects: G is SL(2,R) or a

warped Heisenberg group.

More precisely: there is a subgroup S ⊂ G, such

that:

• S is normal, and the Lie algebra of S is a factor

in G
• S is co-compact in G (i.e. G/S is compact)

• S is isomorphic to PSLk(2,R) the k-folded cover

of PSL(2,R), or

-S is a warped Heisenberg group.

• S acts on M locally freely (i.e. stabilizer in S

are discrete)

Corollary The stabilizer H is “almost discrete”:

its connected component is compact. (This is non-

obvious a priori, and false for non-compact homo-

geneous spacetimes, and for general homogeneous

pseudo-Riemannian manifolds, even compact)
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Subquestion: Classification of compact homo-

geneous spacetimes: Part II: their geometric

structure

Theorem 2 Up to compact objects, they are iso-

metric to S/H, where H is a co-compact lattice (in

particular discrete) in S, which is PSL(2,R) or a

warped Heisenberg group.

- Roughly, M is a a “local product” modeled on S×
L̃, where L̃ is a homogeneous Riemannian manifold

—– Details:

• The case S = PSLk(2,R) (due to Gromov)

- M = S × L̃/H:

- L̃ is a compact homogeneous Riemannian man-

ifold

- There is H0 a lattice in S, such that H is the

graph of a homomorphism ρ : H0 → Isom(L̃)

- The centralizer of ρ(H0) acts transitively on L̃.

- The metric on S × L̃ is: c.Killing
⊗
rL̃, c con-

stant, rL̃ the Riemannian metric of L̃

- Conversely, with these data, one constructs a

compact homogeneous spacetime.

• S a warped Heisenberg group: a little bit com-

plicated description...
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The question (non-homogeneous case)

Theorem 3 (Zimmer, Gromov, Adams-Stuck, Zeghib)

Recall that the Lie algebra of a compact Riemannian

manifold is a sum of an abelian Lie algebra with a

semi-simple Lie algebra of compact type. (i.e. the

Lie algebra of a compact semi-simple Lie group).

– In the Lorentz case, the new factor that might

occur, is a subalgebra of S, where S is the Lie algebra

of SL(2,R) or a warped Heisenberg group.
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More details

(Killing algebra of M = the Lie algebra of its isometry

group)

Theorem 4 (Adams-Stuck, Z.) The Killing Lie al-

gebra of a compact Lorentz manifold is isomorphic

to a direct sum

K + Rk + S,

where K is the Lie algebra of a compact semi-simple

Lie group, k ≥ 0 is an integer and S is trivial or

isomorphic to:

� a Heisenberg algebra (of some dimension),

� a warped Heisenberg algebra, or

� sl(2,R).

Conversely, any such algebra is isomorphic to the

Lie algebra of the isometry group of some compact

Lorentz manifold.
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The non-compact case

— Trivial counter-example: G a Lie group, endow G
with any Lorentz scalar product, and left translate it on

G. The left G action is isometric → G is a homogeneous

spacetime.

But, the G-action is proper (stabilizer are trivial).

The same is true, in general, for Isom(G) (which might

cantain properly G)

————————-

The subquestion: FindH closed, non-compact, such

that Ad(H) preserves a Lorentz scaler product on G/H?

Example: Symmetric spaces (reductive or not)

— Non-reductive Lorentz symmetric spaces: clssified

by Cahen-Parker.

————————–

Non-compact spacetimes are more interesting in physics.

Observation: Only few classical exact solutions have

essential isometry groups.

One may try to prove:

“a physical solution (i.e. a natural energy-implusion

tensor + causality conditions =⇒ the solution has a

non-essential isometry group, unless, it is very spe-

cial (e.g. -Minkowski, dS, AdS...) ”
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Results: Non-comapct case

“First work”: Nadine Kowalsky

Thesis with Zimmer,

Notice in CRAS with 8 Theorems,

Article in Ann. Maths: Proofs of 4 Theorems,

Unfortunately, she prematurely dead...

—————————–

Algebraic hypothesis:

G a simple (sometimes semi-simple) connected Lie group,

acting isometrically non-properly on a Lorentz manifold

M .

————————

Principal algebraic result: G =O(1, n) orO(2, n)

—————————

Geometric result (without proof) M is essentially

dSn or AdSn.

More exactly, this is true up to (a local) warped prod-

uct.

—————————-

Works by S. Adams (also an old student of Zimmer):

– New proof of Kowalsky’s algebraic Theorem.

– New groups, but with a stronger dynamical hypoth-

esis.
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Super-question The Diff (M )-action on Lor(M )

– Pierre Mounoud (Lafontaine’s student)

– Case of compact surfaces: Klein Bottle or a torus

Theorem 1 For M = Klein bottle, the Diff(M)-

action on Lor(M ) is proper.

———————

Torus case: M

F the space of flat metrics on M .

– Such a metric is linear (on R2)

– The Diff0(M )-action on F is proper

– The Diff (M )-action on F/Diff0(M ) is identified

to the action of SL(2,Z) on

SL(2,R)/{

 e

t 0

0 e−t


 , t ∈ R}

which is “dual” to the action of the geodesic flow on

the modular surface H2/SL(2,Z).

– This is in particular ergodic

—————————————–

Theorem 2 The Diff(M )-action on Lor(M ) −F
(the space of non-flat metrics) is proper.

An amazing lemma: If a Lorentz metric on the

torus has curvature constant along one isotropic foliation,

then this metric is flat.
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