0.0.1 Constraints. LCBY equations

Thin sanwich formulation. Given:
riemannian manifold (M, ~), scalar 7.
Traceless tensor u*, scalar N.
Sources, fields and matter: 4 scalars p; > 0, 2 vectors Ji, Js.
Unknowns: scalar ¢, vector

Equations
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Note: 1 scalar field (source)

2p0 = N72000|%, 2p3 = v 0;40;0



0.0.2 Momentum constraint

Suppose momentarily ¢ is known if 97 # 0 or Jo # 0. Linear elliptic for 3 .
Theorem. (as. euc. case)
(M,~): WZ, as. euc., N>0, N-1eWp, ,o>2+1,p>-2,p> 3.
u, T EWE s T2 €WE 510,502 0,0>0, (1—p)e W, 5.
Then the momentum constraint has one and only one solution 3 € W7, s
with 0 < s < Max(sg,0 —2), =3 <d<n-2-3
Case of compact M, same result without the weights, if (M,~) has no con-
formal Killing vector, or, when it has one, if the given data and sources are

invariant under it.



0.0.3 Theorem. (M compact)

The (L) equation in vacuum on (M,~), v € WP,
p > %, admits a solution ¢ > 0, ¢ € W}’ if:

1. (M,~) is in the positive Yamabe class, r(y) =1 and a Z 0 on M.

2. (M,~) is in the zero Yamabe class, r(y)=0, 72 # 0 and a # 0 on M.

3.(M,~) is in the negative Yamabe class, r(7) = —1 and Inf 72 > 0 on a
sufficiently large subset of M.

Proof: super and subsolution method. Local conformal transformations
when necessary.

Case of coupling with a scalar field:

a=a+qy, T=7—qs, b=>b—my?

02%+1,a,beLPﬂL°°,



0.0.4 Definition

(M,7) is (p,o,p) as. euc. if y—e€e WP, o> %+1,p>—%,then7—e€
Cl a>o0.

0.0.5 Theorem.

Let (M,7) be (p,0,p) as. euc. ie. y—e€ WP 0> 24+1,p> 2.
The operator A, — k, k € W? v.60t20 S0 = 0, dg > —%, is an 1somorph1bm
from W7, 5 onto W2 ,, with 0 § s < Max(o —1,sp), if

p>ﬁ, —ﬁ<6<—ﬁ+n—2.
2 P P

and if
/{|8f\2+kf2}u7>0 forall feD, f#£0.
M

Proof. A, —k, k€ W5 .o do > —%, is injective on ng if p> 3,
§ > —2, because if u € ker(A, — k) N W35, 0 > =%, then u € Wy s for any
0 < 2+n75 henceforsome5>71+fff

P
Integration after product by u and Holder inequality complete the proof.



0.0.6 Maximum principle.

Ifc—0 € Wgé, p>5g,0> —%, with ¢ a number > 0 and if 6 satisfies the

equation

AO—kO=—f

withy—ee Wl , 0> 2+1,p> -3, k€ Wi sio:k >0, and f > 0, then
6 >0on M.
Proof. The lemma holds by the classical maximum principle when ¢ — 0 €

Wsp—i-Z 5 if s > %, o > f%, and k is bounded, since then § € C? and tends to

c at infinity. Approximate f and k in W[, by sequences fn, k, € WZ;.,,
s> %, fn >0, k, > 0 and use the isomorphism theorem.



Theorem (Lichnerowicz equation, scaled sources, n=3).
Let (M,~) be a (p,a p) asymptotically euclidean 3- manifold (M,~), o
2 —|— 1,p> —é, P > 2 in the positive Yamabe class, conformally tranbformed SO

that r(y) = O The equatlon
Ayp+ap T+ qp® —bp® =0,
a,q,bc W55+2,5> —%, a,q,b>0,
has one and only one solution, p = 14+ u, u € W§57 p>0>ifd<1— %. It

can be obtained by iteration.
If moreover a,q,b e W? b.6420 50 >0, then u € wP sr2.60 S = Min(sg,0 — 1).



0.0.7 Unscaled sources.
0.0.8 Theorem (n=3)
Let a,d=b—qe € W} ;.,a,d>0,5>0,6> —%, p > 3, be given on (M, ),
(p, o, p) as. euc. positive Yamabe. The (L) equation
Dyp —r(V)p+ap™ " +dp® =0

has a solution ¢ > 0, with 1 — ¢ € Wf+26, s=1Inf(sp,0 — 1), —% <i<1l-— %
if on M it holds that either

e 1. d+a <r,infzi(z) > 0, and infcpr z2(x) > max {1,sup e 21(2)},
where z1(z) and z9(x) are the two positive roots of the polynomial

Pu(2) = d(x)2® — r(z)2% + a(z).
e or 2.

1
L+ flallwg

0,642

<a, a=0{ P

ldllwy

0,542
C > 0 depends only on (M, 7).

Proof. 1. Super - subsolutions.
2. Tterate, starting from ug = 1 — @9 = 0. Then u,, > 0. Prove uniform
bounds in W3 5



