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ABSTRACT

We introduce a large class of systems of partial differential equations on
a base manifold M , a class that, arguably, includes all systems of physical
interest. We then give a general definition — applicable to any system in this
class — of “having the diffeomorphisms on M as a gauge group”, and “having
an initial-value formulation, up to this gauge”. This definition is algebraic in
the coefficients of the differential equation. The Einstein system, of course,
satisfies our definition. There do not, however, appear to be many other
systems that do, suggesting that these properties are rather special to the
Einstein system.

1 Introduction

Two features of Einstein’s equation play a fundamental role in the structure
of the general theory of relativity.

The first of these is that this equation manifests gauge freedom associated
with diffeomorphisms on the underlying space-time manifold. This freedom is
perhaps the striking feature of the relativity theory. It impacts the treatment,
within the theory, of numerous topics, e.g., the character and structure of
gravitational energy [2] [7], and of gravitational radiation [11] [5]. Indeed,
while this gauge freedom was once regarded as a curious and novel feature of
the theory, it is now sometimes argued (ref) that diffeomorphism gauge is a
necessary feature of any viable physical theory based on partial differential
equations on a manifold.

The second feature is that Einstein’s equation manifests, up to this gauge
freedom, a well-posed initial-value formulation [4]. Having an initial-value
formulation is by now so much a part of our thinking that it is difficult to
imagine doing physics without it. For example, in order even to discuss
whether or not a physical system is stable, or whether or not it sends signals
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superluminally requires already such a formulation. In the case of the former,
for instance, stability deals with the evolution of small perturbations of that
system, while “evolution” refers to an initial-value formulation.

These two features are, clearly, closely intertwined with each other. In
particular, Einstein’s equation as it stands does not admit an initial-value
formulation in the traditional sense, precisely because the gauge freedom
prohibits this. Given the central role these two features play in the structure
of the theory, then, it would be of some interest to understand better how
they operate and how they interact. What is the mechanism by which general
relativity manifests these features? For example, it is not obvious, merely by
examining the Einstein system of partial differential equations, that it has
an initial-value formulation up to gauge. One route to understanding these
issues would be to formulate a general characterization of having “gauge free-
dom associated with diffeomorphisms, and, up to that freedom, a well-posed
initial-value formulation”. That is, one would like to formulate a precise
definition of this notion, a definition that is applicable, say, to virtually any
system of partial differential equations on a manifold. We here formulate
such a definition.

Once in possession of this definition, we can ask what other systems of
partial differential equations satisfy it; and whether any of those systems are
likely to underlie viable physical theories. We shall find just two other classes
of such systems. One is that for special relativity — regarding the Minkowski
metric as dynamic. The other is a certain class of systems involving a pre-
ferred vector field, none of which seem to underlie physical theories. Are
there any other systems of partial differential equations — either invented
for this purpose or already available in the context of other, known, physical
theories — that also satisfy our definition? Is there some theorem to the
effect that the only systems satisfying our definition are those appearing in
some short list?

In Sect 2, we review briefly systems of partial differential equations, and
the conditions under which such a system admits an initial-value formula-
tion. The key idea is to generate a universal framework, into which all the
partial differential equations of physics fit. In Sect. 3, we introduce the no-
tion of gauge for a system of partial differential equations; and, in particular,
that of diffeomorphism gauge freedom. It turns out that “gauge” can be
defined using only the partial differential equation itself, and not any phys-
ical interpretation of that equation. In Sect 4, we introduce our definition
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of a system’s having an initial-value formulation up to gauge. This defini-
tion, while perhaps not as simple as one might have hoped, does have the
important feature that it is essentially algebraic, i.e., it involves only testing
the algebra of the coefficients in the equation. Some further examples and
other issues are discussed briefly in the Conclusion, Sect 5. Appendix A is a
plea for settlement of an important open question involving the existence of
an initial-value formulation for general hyperbolic systems with constraints.
Finally, in Appendix B we summarize a few facts about the linearized ver-
sion of a system of partial differential equations and the relation of linearized
solutions to gauge symmetries. While this material in these appendices has
some relevance to the paper, it is not central thereto.

2 Partial Differential Equations

It might seem at first thought that the task of this section — to set up a
universal framework for the physically interesting partial differential equa-
tions — is nearly an impossible one. There is clearly an enormous variety of
possible systems of partial differential equations in this World: How, given
this apparent diversity, will we ever get sufficient control over these equations
to be able to analyze the character of the the “general” one? It turns out,
however, that this problem is more apparent than real. There exists a general
formulation of the subject of partial differential equations — a formulation
that, on the one hand, is systematic, and, on the other, is sufficiently broad
to include virtually all equations of physical interest. The key idea of this
formulation is to restrict consideration to a certain class of systems of partial
differential equations — namely to systems that are first-order (i.e., involve
only first derivatives of the fields) and quasilinear (i.e., are linear in those
first derivatives). This class is much broader than it appears at first. For
example, higher-order systems are cast into this form by introducing new
fields to represent the lower derivatives. This class, it turns out, admits a
systematic treatment, and at the same time appears to be adequate for the
description of physical phenomena. This general formulation of partial dif-
ferential equations of physics (which is discussed in more detail, with many
examples, in [6]) is summarized below.

Let there be given a fibre bundle, consisting of some base manifold M ,
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some bundle manifold B, and some smooth projection mapping B π→ M .
Typically, M will be the 4-dimensional manifold of space-time events (but it
could be any smooth manifold). By the fibre over a point x of M , we mean
the set of all points b of B such that π(b) = x. Think of the fibre over x ∈ M
as “the set of possible field-values at x”. Then B is interpreted as the set of
“all possible choices of field-values at all points of M”, and π as the mapping
that assigns, to each such choice, the underlying point of M . Thus, point b
of B could be written as b = (x, φ), with x ∈ M and φ in the fibre over x.
The action of the projection mapping would then be given by π(x, φ) = x.
Typically, the fibre over a point x ∈ M will be some collection of tensors or
other geometrical objects (such as derivative operators, spinors, etc.) at x,
possibly subject to various symmetries or other algebraic conditions, whence
B will be the manifold of all such collections of objects at all points of M . A
tangent vector at a point of B is said to be vertical if it is tangent to the fibre
at that point (or, what is the same thing, if its image under the projection π
vanishes). Thus, a vertical vector represents an “infinitesimal change in the
field-values” at a fixed point of M . We shall adopt the convention that all
“algebraic constraints” on our fields have been incorporated already at the
level of the construction of the bundle manifold B, and thus that no such
constraints are to be imposed as additional conditions on B. While we shall
think of B as representing “field values”, it can in general be any smooth
manifold, subject only to the local-product condition in the definition of a
fibre bundle1.

For Maxwell theory, for example, i) M is the four-dimensional space-time
manifold; ii) B is the ten-manifold consisting of pairs (x, Fab), where x ∈ M
and Fab is a skew tensor at x; iii) the projection π sends (x, Fab) to x; iv)
the fibre over x ∈ M is the six-manifold of skew Fab at x; and v) a vertical
vector at point (x, Fab) of B may be represented by a skew tensor2 δFab at

1Recall that this condition requires, essentially, that, locally in M , B can be written
as a product, M × F , of M with some other fixed manifold F , in such a way that the
projection mapping π becomes the projection to the M -factor in this product. This
condition guarantees, e.g., that, locally, all the fibres of the bundle are diffeomorphic with
this fixed manifold F , and so with each other. We shall take the term “fibre bundle”, to
mean such a smooth mapping of manifolds, B π→ M , subject only to this local-product
condition. That is, we shall not require (as is sometimes done [12]) that there also be
given a group action on the bundle manifold.

2This δFab, which we may think of as a “small change in Fab” is, more precisely, the
tangent vector, at Fab, to some curve in the manifold of skew tensors at x.

4



x. For general relativity, M is again the four-manifold of space-time events,
while the fibre over x ∈ M consists of pairs (gab,∇a), where gab is a Lorentz-
signature metric and ∇a a derivative operator3, at x. Thus, the dimension of
the fibres in this case is 50 (= 10 + 40); while the dimension of the manifold
B is 54. A vertical vector at point (x, gab,∇a) of B may be represented by
pair of tensors, (δgab, s

m
ab), with δgab (representing the gab-component of

the vector) and sm
ab (representing the ∇a-component of the vector4) both

symmetric the indices “a” and “b”.
Returning to the general case, by a cross-section of such a bundle we

mean a smooth mapping M
φ→ B such that π ◦ φ is the identity map on M .

In other words, a cross-section φ assigns, to each point x of M , some point,
φ(x), of the fibre over x. Think of a given cross-section as representing a
particular choice of a “field” (of the type represented by the bundle) over
M . Thus, for Maxwell theory, a cross-section of the bundle is represented
by a smooth skew tensor field Fab on the space-time manifold M ; for general
relativity, by smooth fields gab and ∇a on M .

Our partial differential equation will be an equation on such a cross-
section map φ, linear in its first derivative. In order to write out this equation,
we must introduce two new smooth fields, kAa

α and jA, on B. Being fields
on B, these depend of course on the point b = (x, φ) of B, i.e., they depend
on a choice of “point x of the base manifold, as well as field-value φ at that
point”. The index “α” on kAa

α is a tensor index in B at the point, b ∈ B,
at which this field is evaluated; the index “a” is a tensor index in M at the
corresponding point, π(b), of the base manifold. The index “A”, of both
kAa

α and jA, lies in some new vector space (which will turn out, shortly, to
be the vector space of equations). Finally, our partial differential equation,
on a cross-section φ, is

kAa
α(∇φ)a

α = jA. (1)

This equation is to be imposed at each point x ∈ M , with the fields k and

3A (torsion-free) derivative operator at a point x of M could be defined, for example,
as a map from smooth covector fields on M to second-rank covariant tensors at x, subject
to additivity, the Leibnitz rule, and consistency with the exterior derivative.

4Recall that the difference of two (torsion-free) derivative operators, ∇a and ∇̃a on a
manifold is represented by a tensor Cm

ab = Cm
(ab), which is defined by the property that,

for any smooth covector field ka, ∇akb−∇̃akb = −Cm
abkm. Thus, a tangent vector in the

space of derivative operators at a point gives rise naturally, i.e., without any “reference”
derivative oprator ∇̃a, to such a tensor sm

ab.
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j evaluated at φ(x) ∈ B, i.e., on the cross-section. Here, (∇φ)a
α denotes

the derivative of the map φ (i.e., a map from tangent vectors in M at x to
tangent vectors in B at φ(x)). The index “A” in Eqn. (1) is free, i.e., Eqn.
(1) represents a number of scalar equations equal to the dimension of the
vector space in which “A” lies. We demand that νAkAa

α = 0 only when
νA = 0, i.e., that every the equation of the system (1) really is “differential”.

For Maxwell theory, Eqn. (1) is Maxwell’s equations,

∇[aFbc] = 0, (2)

∇aFab = 0. (3)

The index “A” in this case stands for three antisymmetric M -tensor indices,
together with a single M -tensor index (this being the index-structure of Eqns.
(2)-(3)). Thus, “A” in this example lies in a vector space of dimension 8 (=
4 + 4). For general relativity (say, with vanishing sources), Eqn. (1) is

∇agbc = 0, (4)

Rab(c
mgd)m = 0, (5)

Ramb
m = 0, (6)

where we have defined the Riemann tensor Rabc
d by the property that∇[a∇b]kc =

1/2Rabc
dkd for every covector field kd on M . Note that these are indeed first-

order, quasilinear equations in the fields gab and ∇a (for Rabc
d is the “deriva-

tive of the derivative operator”). The equation-index “A” in this example
lies in a vector space of dimension 110 (= 40 + 60 + 10, these three terms
corresponding, respectively, to the three equations (4)-(6)).

Returning to the general case, we are concerned with the issue of when
the system (1) has an initial-value formulation. To this end, we consider a
submanifold, T , of M of codimension one, together with a cross-section φ0,
of B over T5. Think of the cross section φ0 as the “initial data” at the “time”
represented by T . When do these data give rise to (i.e., are the restrictions
to T of) some solution, φ, of (1), and when is that solution unique? In order
to answer these questions, we require two further notions.

Fix a bundle, B π→ M , and a system (1) of partial differential equations
on that bundle. By a constraint of this system, at a point of B, we mean a

5That is, φ0 is a smooth map from T to B such that π ◦ φ0 is the identity on T .
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tensor ca
A at that point satisfying c(a

Ak|A|b)α′ = 0 there. Here, and hereafter,
a prime on a Greek subscript means “applied only to vertical vectors”. [These
primes will appear frequently, for it is usually only the “vertical parts” of
things that are of interest.] Note that the constraints at each point of B form
a vector space. Each constraint, it turns out, has two distinct facets. It is
one of the beauties of this subject that these two, apparently quite dissimilar,
facets coalesce into the simple, geometrical, definition above.

As to the first facet, each constraint gives rise to an integrability condition.
Fix any constraint field, ca

A, and any solution φ of Eqn. (1). Contract both
sides of Eqn. (1) with cb

A, and apply to both sides of the result some deriva-
tive operator, ∇̃b, on M . Then, by the defining equation for a constraint,
terms involving second derivatives of φ disappear, leaving an algebraic equa-
tion (indeed, a polynomial of degree at most two) in the first derivative,
(∇φ)a

α, of φ. The given constraint field is said to be integrable if this equa-
tion is an algebraic consequence of Eqn. (1), i.e., if the difference of its two
sides can be written as the product of two factors: one some expression (at
most linear in field-derivatives), and the other the difference of the two sides
of (1). Note that integrability of a fixed constraint field is independent of
the choice, above, of the derivative operator ∇̃, for a change in this choice is
compensated for by a change in the first factor in the product above. Note
also that any linear combination, with coefficients functions on B, of inte-
grable constraint fields is again an integrable constraint field. We say that
the constraints of the system are integrable if every such constraint field is.
Failure of integrability of the constraints may be interpreted as meaning that
“not all of the partial differential equations appropriate to the given system
have been included in (1)”6.

As to the second facet, each constraint gives rise to a consistency condition
on initial data. Fix a constraint field, ca

A, and a solution φ of Eqn. (1); as

6On discovering that integrability fails for some given system of partial differential
equations, one might contemplate constructing a new system, all of whose constraints
are integrable, in the following manner. First augment the given system by additional
quasilinear equations so chosen that they cause the original integrability conditions to
be satisfied. This new system, so constructed, may now give rise to new constraints,
and so to additional integrability conditions. If so, repeat the first step above, adding as
necessary still more quasilinear equations; and continue in this way. In many cases, such
a procedure terminates in an integrable system, although, as far as I am aware, there is
no simple criterion for when this will happen.
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well as some submanifold T of M of codimension one. Then, at each point
of T , we have

nmcm
AkAa

α(∇φ)a
α = nmcm

AjA, (7)

where nm is the normal to T at that point. But, by virtue of the definition
of a constraint, the index “a” in the expression nmcm

AkAa
α is tangent to T

(for the contraction of this expression with the normal, na, vanishes). So,
Eqn. (7) takes the derivative of φ only in directions tangent to T , and so it
refers only to the value of φ on T , i.e., only to the initial data induced on
T from φ. In short, Eqn. (7) represents a consistency condition on initial
data. If any consistency condition obtained in this way were not satisfied, by
given data on T , then we would have have no hope of finding, for those data,
a corresponding solution of Eqn. (1). We say that the constraints of the
system (1) are complete if, in a certain sense, every consistency condition on
initial data on T arises in the manner of Eqn. (7). The definition7, in more
detail, is the following. We demand that, for every point b of B, there is an
open set of covectors na at the corresponding base point, π(b), such that the
following holds: Given any na lying in that open set, and any νA, such that
naνAkAa

α′ = 0, then there exists a constraint cm
A of the system such that

νA = cm
Anm. Here, the na represents a normal to a possible initial surface

(and the open set a restriction on the allowed surface-normals), while the νA

represents the selection, from (1), of a particular consistency condition. The
definition then requires that every such consistency condition arise, via (7),
from some constraint cm

A.
Integrability and completeness, as defined above, hold, as far as I am

aware, for every system of partial differential equations of physical interest.
Consider, for example, the Maxwell system, with field Fab, and equations

(2)-(3). Then initial data consist of the specification of a skew field Fab over
the 3-submanifold T of space-time, where, of course, these tensor indices lie
within the full 4-dimensional space-time M . A constraint, cm

A is represented
by a pair of tensors, (cmabc, cgma), where cmabc is totally antisymmetric, and
c is a number. Here, the equation-index “A” is represented by an antisym-
metric triple of indices, “abc”, together with a single index, “a”. The vector

7This definition replaces a more awkward one, involving dimensions of various vector
spaces, that was given earlier in [6]. While the two definitions are equivalent in the
presence of a hyperbolization (defined below), the present condition is, in the general case,
much more convenient than the earlier one. For example, the Einstein system satisfies the
present definition of completeness, but not the earlier one.
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space of constraints at each point, then, is 2-dimensional. The corresponding
integrability conditions, obtained by taking the curl of (2) and the divergence
of (3) are of course identities. So, the constraints are integrable. The cor-
responding consistency conditions (7) become, in this example, the familiar
conditions ∇ · B = 0 and ∇ · E = 0 on the induced initial data on a space-
like T . This system, we claim, is complete. Indeed, let the open set of na

be that consisting of the timelike covectors. Completeness then becomes the
following assertion: Let, for fixed timelike na, νabc = ν [abc] and νa (i.e., let na

in the open set and νA) be such that

νabcnaδFbc + νanbδFab = 0 (8)

for every δFab = δF[ab] (i.e., such that naνAkaA
α = 0). Then, for some

cabcd = c[abcd] and some number c, (i.e., for some ca
A) we have νbcd = nac

abcd

and νb = cgabna (i.e., we have νA = nac
a
A). But, as is easily checked, this

assertion is true. Note that the open set of na in this example depends only
on the base point, and not the point of the fibre.

Consider, as a second example, the Einstein system, with fields (gab,∇a),
and equations (4)-(6). The initial data in this case consist of the specifica-
tion of fields gab and ∇a on a 3-manifold T . Note that our initial data for
the Einstein system consist of the entire spacetime metric gab at points of
T (and not just its projection into T ), as well as the entire derivative op-
erator ∇a at points of T (and not just that part of it associated with the
extrinsic curvature). These choices are necessitated by our demand that the
Einstein system fit into the general framework for systems of partial differen-
tial equations and the initial-value formulation of such systems. In my view,
the present choices for the initial data, while not the standard ones, do serve
to clarify the relationship between the surface T , the data on that surface,
and the action of the gauge group.

For the Einstein system, the general constraint, cm
A, at a point is rep-

resented by three tensors, cmabc = c[ma](bc), cmabcd = c[mab](cd), and cmab =
gm(acb). Here, the equation-index “A” is represented by the three index-
combinations “abc”, “abcd”, and “ab”, with appropriate symmetries, corre-
sponding to the three equations, (4)-(6), of the Einstein system. The di-
mension of the vector space of constraints at a point is 104 (= 60 + 40 +
4). The corresponding integrability conditions correspond to taking a curl
of Eqn. (4) and to applying the Bianchi identities to Eqns. (5)-(6). These
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constraints are integrable (the integrability condition for (4) being (5), and
those for (5)-(6) being “identities”). Furthermore, we claim, this system is
complete. Indeed, let the open set of na consist of the timelike covectors.
[Note that this set, in contrast to the Maxwell case, depends on fibre-point.]
Completeness then becomes the following assertion: Let, for fixed timelike
na, νabc = νa(bc), νabcd = ν [ab](cd) and νab = ν(ab) (i.e., νA) be such that

νabcnaδgbc + νabcdnas
p
bcgdp + νabn[as

m
m]b = 0 (9)

for every δgbc = δg(bc) and sm
ab = sm

(ab) (i.e., such that naνAkaA
α = 0).

Then, for some cmabc = c[ma](bc), cmabcd = cm[ab](cd) and cmab = gm(acb) (i.e., for
some ca

A) we have νabc = nmcmabc, νabcd = nmcmabcd and νab = nmcmab (i.e.,
we have νA = nac

a
A). This assertion, again, is true.

We return now to the general case. The key to achieving an initial-value
formulation for the system (1) is an object called a hyperbolization, a field
hβA on the bundle manifold B having the properties described below. Fix
any point, (x, φ), of B, and consider, for any covector nm at x ∈ M and any
two vertical vectors, δφα, δ′φα, at (x, φ) ∈ B, the expression

nmhβAkAm
αδφαδ′φβ. (10)

This expression is a bilinear form in δφα and δ′φα. We demand, in order
that this hβA be a hyperbolization, that this expression be symmetric un-
der interchange of δφα, δ′φα for every nm, and positive-definite (i.e., positive
whenever δ′φβ = δφβ 6= 0) for every nm lying in some open set. Generally
speaking, the most direct way to specify a hyperbolization for a system of
partial differential equations is simply to give this bilinear expression. Such
an expression indeed defines a hyperbolization provided it is symmetric and
positive-definite, as described above; and furthermore, that it is of the form
(10), i.e., that it is some multiple of the result of replacing, in the left side of
Eqn. (1), “(∇φ)a

α” by “naδφ
α”. For example, the Maxwell system possess

a hyperbolization. A corresponding quadratic form is given by

uanb(δF
amδ′F b

m − 1/4gabδFmnδ
′Fmn). (11)

where ua is any fixed timelike vector. We note that this quadratic form
is indeed symmetric under interchange of δFab and δ′Fab, and that it is in-
deed positive-definite for ua and na timelike with uana > 0. Furthermore,
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this quadratic form does indeed arise as a linear combination of n[aδFbc] and
naδF

ab (this fact being, e.g., the essence of the proof that conservation of the
standard electromagnetic stress-energy follows from Maxwell’s equations).
Note that each choice of timelike ua gives rise to a particular hyperboliza-
tion, i.e., that there are many hyperbolizations in this Maxwell example.
More generally, consider any system of equations on fields, for which there is
a symmetric stress-energy tensor that i) is a quadratic algebraic function of
all the fields; ii) is, by virtue of the field equations, conserved; and ii) satisfies
a suitable energy condition. Then that system of equations admits a hyper-
bolization via this stress-energy, just as for the Maxwell case. The Einstein
system admits no hyperbolization, a feature that, as we shall see later, is
closely related to the invariance of this system under diffeomorphisms.

A key assertion of this subject is to the effect that a system of partial
differential equations, provided it satisfies certain conditions, must have an
initial-value formulation. Consider the system (1), and let us suppose that
i) the constraints of this system are integrable and complete, ii) this system
admits some hyperbolization field, hαA, on B, and iii) the open sets of cov-
ectors na for completeness and for the hyperbolization have, at each point
of B, nonempty intersection. Next, let there be given initial data, i.e., a
cross section φ0 over some submanifold T of M of codimension one. Let this
initial-data set, (T, φo), i) satisfy the consistency conditions, (7), and ii) be
such that, at each point of T , the normal, na, to T at that point lies within
the two open sets above. Note that the second supposition, which is essen-
tially the requirement that the data set (T, φo) be “non-characteristic”, in
general involves both T and the data φo thereon. Then we have the following
assertion: There exists one and only one solution of the partial differential
equation, (1), defined in a neighborhood of T , that manifests the given ini-
tial data. This assertion is discussed in more detail in Appendix A. It is,
unfortunately, not theorem, because there is a gap in the proof. Closing this
gap (possibly with the introduction of some benign further hypotheses) is,
in my opinion, one of the important open questions in the subject of partial
differential equations.

It is not hard to see, intuitively, that the assertion above is reasonable.
Let the system (1) satisfy the conditions above, and fix na, lying in the
open sets above. Now consider nak

Aa
α, regarded as a linear mapping from

the vector space of equations to the vector space of covectors in field-space.
The domain of this mapping is the vector space of equations; the kernel of
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this mapping is (by completeness) the vector space of consistency conditions
(7); and the range of this mapping is (by existence of a hyperbolization)
the vector space of vertical vectors. Using an elementary fact about lin-
ear mappings, we now have the following relation: (dimension of space of
equations) - (dimension of space of consistency conditions) = (dimension of
space of fields). But this relation asserts that the number of equations in
(1) involving “time-derivatives” (the left side of the relation) is equal to the
number of field-components. In other words, this relation guarantees that
Eqn. (1) can be solved for the “time-derivatives” of all fields, in terms of
their values and space-derivatives. Then integrability guarantees, in a simi-
lar way, that the time-derivatives of the consistency conditions are expressed
in terms of the values and space-derivatives of those conditions. In short,
completeness, integrability and the existence of a hyperbolization, taken to-
gether, guarantee that the system (1) has a “naive” initial-value formulation.

3 Gauge

A key concept is the notion of a gauge transformation. We begin with the
“infinitesimal” ones.

Fix a first-order, quasilinear system of partial differential equations, (1).
By a gauge vector field for this system, we mean a smooth vector field, ξα,
on the bundle manifold B that i) preserves the fibres, i.e., has the property
that, for any two points b, b′ of the bundle manifold lying in the same fibre,
we have (∇π)α

a(ξα)|b = (∇π)α
a(ξα)|b′ ; and ii) preserves the system (1), i.e.,

satisfies the equations

Lξk
Aa

α = SA
BkBa

α + γaA
m(∇π)α

m, (12)

Lξj
A = SA

BjB + γmA
m, (13)

for some fields SA
B and γaA

m on B.. The first condition, preservation of
the fibres, is precisely the requirement that there exist some vector field in
the base manifold (the drop of ξ) having ξα as its lift. So, for example,
every vertical vector field on B is fibre-preserving (for it is a lift of the zero
vector field on the base manifold). In the second condition, the Lie-derivative
operator, Lξ is defined as follows: Consider the one-parameter family of
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diffeomorphisms on the bundle manifold generated by ξα. Take the image of
the field (kAa

α or jA) under that family of diffeomorphisms (noting that this is
well-defined, in the case of kAa

α, by condition i)). Finally, take the parameter-
derivative of this family at parameter-value zero. The arbitrary fields SA

B

and γaA
m in Eqns. (12)-(13) reflect a certain freedom in how our basic

differential equation (1) is represented in terms of (k, j). Indeed, replacement
of (kAa

α, jA) by (WA
BkBa

α, WA
BjB), for WA

B an arbitrary invertible tensor
field, results in an identical system of equations. This is the origin of the SA

B

in (12)-(13). Furthermore, adding to kAa
α and jA the fields γaA

m(∇π)α
m and

γmA
m, respectively, where γaA

m is an arbitrary field on B, also results in an
identical system of equations8. This is the origin of the γaA

m in (12)-(13).
These gauge vector fields represent, of course, “infinitesimal gauge trans-

formations”. We may also define, similarly, a (full) gauge transformation as
a diffeomorphism, Ψ, on B that sends fibres to fibres, and the fields kAa

α, jA

to an equivalent pair. It is immediate that, for Ψ a gauge transformation,
there exists a unique diffeomorphism, ψ, (the drop of Ψ) on M such that
π ◦ Ψ = ψ ◦ π. These two versions of gauge are indeed related as we would
expect: A vector field on B generates (locally) gauge transformations if and
only if it is a gauge vector field. The gauge vector fields are generally simpler
to work with computationally, while the full gauge transformations are easier
to think about.

Every gauge transformation sends every solution cross-section of (1) to
another solution cross-section (clearly, since a diffeomorphism on B, in order
to be a gauge transformation, must preserve everything involved in (1))9.
The Lie bracket of two gauge vector fields is, of course, a gauge vector field,
and so the gauge vector fields form a Lie algebra. Furthermore, the drop of
the bracket is the bracket of the drops. That is, “drop” is a homomorphism
from the Lie algebra of gauge vector fields to the Lie algebra of smooth vector
fields on M . Similarly, the gauge transformations form, under composition,

8To see this, use the relation (∇φ)a
α(∇π)α

b = δb
a, which is precisely the derivative of

the equation π ◦ φ = (identity on M).
9The converse of this assertion — that a fibre-preserving diffeomorphism on B that

sends solution cross-sections to solution cross-sections must be a gauge transformation —
also holds, under the additional condition that there are “sufficiently many” solutions of
(1). What is required, in more detail, is that, given any tensor µa

α at any point of B such
that kaA

αµa
α = jA at that point, then there exists some solution cross-section through

that point, with (∇φ)a
α = µa

α there.
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a group; and “drop” is a homomorphism from this group to the group of
diffeomorphisms on the manifold M .

The traditional picture of a gauge transformation is of a change in the
mathematical objects used to describe a physical system, which, however, re-
flects no change in the physical system itself. According to this picture, then,
the notion of a gauge transformation is intimately connected with the physi-
cal interpretation that is attached to the mathematical objects. But here, by
contrast, the definition of “gauge transformation” refers only to mathemat-
ical objects — specifically, only to the differential equation (1) — with no
direct reference to any physical interpretation. The present definition, in my
view, represents a useful observation about the character of gauge transfor-
mations. The idea is that the “physical interpretation” is already inherent,
in some sense, in the partial differential equation itself. This interpretation,
after all, is merely a compilation of physical effects the fields produce; and
these effects, in turn, are described entirely by the equations those fields sat-
isfy (possibly involving additional fields that describe the various measuring
instruments). This remark will be illustrated by the examples below.

In the Maxwell case, with zero sources in flat space-time, the gauge trans-
formations consist precisely of duality rotations and scaling transformations
on the Maxwell field (replacement Fab by any linear combination, with con-
stant coefficients, of itself and its dual), and, the replacement of Fab by the
result of applying to that field a Poincare transformation. That is, the gauge
group is a Lie group, of dimension twelve. The corresponding gauge vec-
tor fields are vertical for the duality rotations and scaling, but not for the
Poincare transformations. If we replace this system by one in a curved back-
ground space-time (say, having no symmetries), then the Poincare group of
gauge transformations disappears. If we further replace this Maxwell system
by one with a fixed charge-current source, then we no longer have duality
or scaling as gauge transformations. Quite generally, gauge transformations
lose their character when there is turned on an interaction that breaks the
corresponding gauge-symmetry. Suppose that the charge-current source was
not fixed, but instead was expressed in terms of additional fields, where these
were included within the system, (1), of partial differential equations? In this
case, the scalings would normally reappear as gauge transformations. Note
that in order to recover the “usual” gauge transformations in the Maxwell
case, it is necessary to introduce an additional field, Aa, (thus enlarging B
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to a fourteen-manifold), and an additional equation,

∇[aAb] = Fab. (14)

For this enlarged system, the gauge transformations include adding to Aa the
gradient of any smooth scalar field on M . The corresponding gauge vector
fields are all vertical. Note that it not possible, within the present framework,
to admit only the field Aa, and not Fab, for we are requiring right from the
beginning that our system be first-order.

For the Einstein system with zero sources, the gauge transformations
consist [1] of scaling transformations (multiplication of gab by a constant
factor, keeping ∇a fixed), and the diffeomorphisms on M (which we shall
consider in more detail shortly). If sources are included in Einstein’s equation
— and if those sources are represented by fields, which are included within the
bundle manifold B and on which equations are imposed — then these gauge
transformations above will generally remain such. Suppose that we wished to
restrict consideration to a particular class of solutions of Einstein’s equation
— say, those having a Killing field. What are the gauge transformations in
this case? We are not permitted simply to impose “having a Killing field”
on top of Eqns. (4)-(6), for the general rule is that all information is to be
encoded, once and for all, into the single system, (1), of partial differential
equations. So, we might proceed as follows. First, introduce a new bundle,
with fibre over x ∈ M consisting of quadruples, (gab,∇a, ζ

a, ζa
b), with gab

Lorentz-signature and the combination gmaζb
m symmetric. [Thus, the fibres

in this case have dimension 64 (= 10 + 40 + 4 + 10).] Let the equations on
these fields consist of all those already given for the Einstein system, (4)-(6),
together with two new equations: ∇aζ

b = ζa
b and ∇aζb

m + Rsab
mζs = 0.

Thus, the new field ζa represents the Killing field, and ζa
b its derivative (the

latter being necessary to retain the first-order character). Note that this
new system has, for its gauge transformations, not only the g-scalings and
diffeomorphisms above, but also ζ-scalings. An alternative treatment of the
Einstein system with Killing field is the following. Fix, once and for all, a
(say, nowhere vanishing) vector field ζa on M . Let the bundle B consist of
all (gab,∇a), with gab Lorentz signature, such that gm(a∇b)ζ

m = 0. Note
that the latter is an algebraic condition on the fields. The fibres in this case
have dimension forty. Let the equations be the usual ones for the Einstein
system, (4)-(6). For this system, the gauge transformations include, not all
M -diffeomorphisms, but rather only those that are ζa-preserving.
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The examples above — of various Maxwell and Einstein systems — are
sufficiently familiar that it was possible to determine their gauge transforma-
tions relatively easily. But what about more complicated systems? Is there
some simple, general procedure that, applied to any system, (1), of partial
differential equations, will yield the complete class of gauge vector fields for
that system? None, apparently, is known. But here is a possible line that
might yield such a procedure. Fix the system, (1). First, find all fields ξα

and SA
B such that the equation

Lξk
Aa

α′ = SA
BkBa

α′ (15)

holds. Eqn. (15) is precisely Eqn. (12), restricted to vertical vectors. But
this equation has the great advantage over (12) that it acts within each fibre
separately: It is virtually “algebraic”. Next, find the γaA

m (which, by (15),
must exist; and which must be unique) such that Eqn. (12) holds. And
finally, demand (as a condition on the original choices of ξα and SA

B) that
this γaA

α also satisfy Eqn. (13). It might be of interest to see if there could
be generated, along this line, some simple procedure for finding the gauge
vector fields.

Up to this point, we have been dealing with “gauge” in a very general
context. We now wish to consider a special case of particular interest: The
gauge of diffeomorphisms. The system (1) of partial differential equations
will be said to admit diffeomorphism gauge if every smooth vector field ξa on
M admits a lifting to some gauge vector field, ξα, on B. In terms of the full
gauge transformations, the condition is that every diffeomorphism on M lifts
to a gauge transformation on B. In the presence of diffeomorphism gauge,
every gauge vector field can be written as the sum of one of the ξα above and
a vertical gauge vector field. It is apparently not known whether, for a system
with diffeomorphism gauge, one can always make a specific choice of lifting,
for each vector field ξa on M , such that the resulting gauge vector fields
themselves form a Lie algebra. Note that, in the presence of diffeomorphism
gauge, the Lie algebra of gauge vector fields is always infinite-dmensional.

The Einstein system, of course, admits diffeomorphism gauge. The Maxwell
system in Minkowski space-time does not. However, if we modify the latter
by including the metric and derivative operator among the fields, and includ-
ing Eqn. (4) and the vanishing of the Riemann tensor among the equations,
then we again recover a system having diffeomorphism gauge.
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Diffeomorphism gauge is particularly tractable in the case in which the
gauge vector field ξα on B arises from the vector field ξa on M by means of
a differential operator. Fix any derivative operator ∇̃a on M , and consider
the equation

ξα = δαa···c
m∇̃a · · · ∇̃cξ

m + · · · . (16)

Here, the right side represents a general linear combination of derivatives of
ξa up to the n-th (with n ≥ 1). We have written out only the highest-order
term, with the remaining terms (with orders n−1 down to zero) indicated by
dots. The coefficient, δαa···c

m, of this highest-order term is a natural tensor,
independent of the choice of derivative operator ∇̃a used on the right in
(16). The coefficients of the lower-order terms do, of course, depend on this
choice. In (16), the coefficients depend on point of the bundle manifold (and
so in particular δαa···c

m is a field on B). The right side of Eqn. (16) is thus
a function on B, where, for b ∈ B, the expressions ∇̃a · · · ∇̃cξ

m are to be
evaluated at π(b) ∈ M . Thus, this right side indeed defines a vector field, ξα,
on B. We next demand that, for every smooth field ξa on M , the field ξα on
B given by (16) be a lift of ξa. This implies that the index “α” of δαa···c

m is
vertical. [To see this, apply (∇π)α

s to both sides of Eqn. (16), using n ≥ 1
and noting that the left side then involves no derivatives of ξa.] Finally, we
impose on the ξα of (16) the condition that it be a gauge vector field. We
claim: If, for every smooth field ξa on M , the field ξα on B given by (16)
is a gauge vector field, then the coefficient δαa···b

m in (16) must satisfy the
following two conditions: i) For every tensor field La···cm on M , the vertical
vector field given by κα = δαa···c

mLa···cm satisfies

Lκk
Aa

α′ − [kAc
α′Lc

m] = SA
BkBa

α′ , (17)

for some SA
B; and ii)

kA(d
αδ|α|a···c)m = 0. (18)

In condition i), the term in square brackets in (17) is to be included only for
the case n = 1. [In fact, this term only makes sense for n = 1.] Condition i)
follows from Eqn. (15), retaining in that equation only the part of highest
order (namely, n) in ξa-derivatives. Since the vertical part is being taken in
(15), i.e., since the index α is primed there, only the vertical derivative of ξα

is taken in that equation, and so no further derivatives of ξa are introduced
there. The square-bracketed term appears in (17) because the Lie derivative
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on the left in (15) involves a term kAm
α∇̃mξa, which must be retained when

and only when n = 1. Note that the left side of (17) is effectively the Lie
derivative within the fibre, since κα is vertical. For condition ii), first take
that part of Eqn. (12) of highest-order (namely, (n + 1)) in ξa-derivatives.
There results γdA

m = kAd
αδαa···c

s∇̃m∇̃a · · · ∇̃cξ
s. [The highest-order term on

the left of (12) is that arising from kAa
α∇̃βξα.] Now substitute this γaA

m

into Eqn. (13), and again take the part highest-order (namely, (n + 1)) in
ξm-derivatives. [Neither the left side of (13), nor the first term on the right,
contribute at all, for they both involve terms of order at most n. Thus, it is
only the γaA

m-term that contributes at this order.]
I do not believe that there are any further simple conditions on δαa···c

m

that follow from the demand that ξα be a gauge vector field10. On the other
hand, it appears that any sort of converse of the above (i.e., any result to the
effect that every δαa···c

m satisfying the two conditions above, together, possi-
bly, with some further conditions, leads, via (16) to a gauge vector field) is
likely to be extremely complicated. The problem, of course, is that the de-
mand that the ξα given by (16) be a gauge vector field imposes conditions on
all the lower-order terms on the right. These terms will already be awkward
(since they will be derivative-operator dependent), and the conditions that
must be imposed on them will surely be complicated.

I am not aware of any example of a system, (1), of first-order, quasilin-
ear partial differential equations, having diffeomorphism gauge freedom, for
which the corresponding gauge vector fields, ξα cannot be expressed as the
result of applying a suitable differential operator to ξa, in the manner of (16).

Let us now return to the example of general relativity. Recall that the
fields in this case consist of a Lorentz-signature metric, gab, together with
a (torsion-free) derivative operator, ∇a; and that the equations are (4)-(6).
Fix a smooth vector field, ξa, on M . Then the corresponding gauge vector
field is given by

ξα = (2gm(b∇a)ξ
m,∇(a∇b)ξ

c) + · · · . (19)

The two components of the first term on the right reflect the behavior of

10A further condition we might reasonably impose (but won’t, becuse it is not needed
for what follows) is that the differential operator in (16) commute with taking the Lie
bracket, i.e., that [ξα(ξa), ξβ(ξ′b)] = ξγ([ξa, ξ′b]). Note that the drop of this equation is
automatic. In the case n > 1, this equation implies: For any two tensor fields, La···cm and
L′a···c

m on M , the vertical vector fields that result from contracting these with δαa···c
m

commute.
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the space-time metric and of the derivative operator, respectively, under
diffeomorphisms. This term is vertical (as, as we have seen, it must be). The
remaining terms on the right are lower-order11 in derivatives of ξa, and are
not all vertical. Thus, the order of the differential operator relating ξα and
ξa in (16), is, in this example, n = 2; and the tensor δαb···c

m in (16) is given
by

δαa···b
m = (0, δ(a

(rδ
b)

s)δ
p
m). (20)

The two expressions on the right in this equation correspond, respectively, to
the g-component and the ∇-component inherent in the index ”α”. One can
check (with a little algebra) that this δαab

m does indeed satisfy Eqn. (18).
It appears to be difficult to find a tractable criterion that decides, given

a general system (1) of partial differential equations, whether or not that
system has diffeomorphism gauge freedom. For common examples (such as
Einstein system, above), all the fields are “geometrical objects”, i.e., are fields
on which the action of diffeomorphisms has been pre-specified. In this case,
there is a simple intuitive criterion: Diffeomorphisms act as gauge when and
only when all fields are “dynamical”, i.e., all are included within the fibres
of the bundle B. But in a general case — with the bundle B and the system
(1) specified in some less concrete way — the situation may not be so clear.
In this connection, it would be useful, at least as a first step, to be able to
find, given the general system (1), those tensors δαb···c

m satisfying the two
conditions given above. From simple examples, these conditions appear to
be rather stringent, i.e., there doesn’t appear to be an excessive number
of solutions. Eqn. (18) is purely algebraic, and so it may be possible to
“solve” it. Note that every solution, δαb···c

m, of Eqn. (18) gives rise to a
whole class of solutions namely, those given by δ′αa···e

m = δα(a···c
nλd···e)n

m,
where λd···en

m = λ(d···e)n
m, but is otherwise arbitrary. In this way, one can

easily raise (or, at minimum, keep the same) the order of δ. It is typically
the lowest-order solutions of Eqn. (18) that are of interest. With respect
to condition i), fix any point of the base manifold M ; and restrict to order
n > 1. Then the vertical vector fields κα on the fibre over this point, satisfying

11There is, unfortunately, a confusing technical issue regarding (19). The term given
explicitly on the right is not a vector field on B, for it involves not only a point, (x, gab,∇a),
of B, but also the “derivative of ∇a” there. For this term to make sense requires, if you
like, a cross-section. However, this dependence on the derivative of ∇a is lower-order in ξa,
and is compensated for by the remaining terms in (19) (which aren’t vector fields either).
The final result is, indeed, a vector field on B.
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Lκk
Aa

α′ = SA
BkaA

α′ for some SA
B, form a vector space. [Essentially, this

equation asserts that the Lie derivative, by κα, of each of a certain collection
of covector fields in the fibre, yields again a certain linear combination of
those covectors.] This vector space is “usually” finite-dimensional. It is
possible that finite-dimensionality follows already from the conditions of the
following section. In any case, fixing now a point of M , δαa···c

m in the fibre
over this point can now be regarded as a linear map from the vector space
of tensors Sa···cm in M at this point to the vector space such vector fields κα

on the fibre.
As an example of the usefulness of the differential operator, (16), we now

establish the following result: Given any the system (1) of equations that
admits diffeomorphism gauge freedom via (16), then that system cannot
have a hyperbolization. Intuitively, we might have expected such a result,
for the diffeomorphism gauge freedom could be invoked to change any given
solution in a region away from some initial surface T while leaving that
solution unchanged on T itself. This possibility would seem to be inconsistent
with the presence of an initial-value formulation. The proof of this result is
quite simple. Let, δαa···c

m yield the diffeomorphism gauge freedom, via (16);
and suppose, for contradiction, that there also exists a hyperbolization, hAα.
Let, at a point, na be such that the quadratic form (10) is positive-definite.
Consider the expression

nr · · ·nsδ
αr···s

m[nahAαkAa
β]np · · ·nqδ

βp···q
n. (21)

On the one hand, this expression must vanish, by (18), since the n’s enforce
symmetrization over the contravariant indices a, p, · · · q. But, on the other
hand, the tensor in square brackets is positive-definite. We conclude that
np · · ·nqδ

βp···q
n = 0. But this must hold for every na in an open set, and so

we have that δβp···q
n = 0.

So, diffeomorphism gauge freedom indeed precludes an initial-value for-
mulation. But other types of gauge freedom need not. For example, the
system of Maxwell’s equations with zero sources, (2)-(3), admits gauge trans-
formations associated with duality and scaling, and yet this system has an
initial-value formulation.
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4 Initial-Value Formulation for Systems with

Gauge

Consider a first-order, quasilinear system, (1), of partial differential equa-
tions. Let the constraints of this system be integrable and complete. Suppose
further that this system manifests some nonzero group of gauge transforma-
tions. Then this system as it stands may have no initial-value formulation,
for, while we have required integrability and completeness, we have not re-
quired the existence of a hyperbolization. Indeed, as we have just seen, a
large degree of gauge freedom (such as that for diffeomorphism gauge) is typ-
ically incompatible with a hyperbolization. Nevertheless, it may be possible,
for certain such systems, to recover an “effective” initial-value formulation.
Consider initial data for such a system, consisting of a submanifold T of M
of codimension one and a cross-section, φo, of our bundle over T , subject to
the consistency conditions, (7), on those data that flow from the constraints.
Roughly speaking, this system has an initial-value formulation “up to gauge”
provided the following holds: Given such initial data, subject to some further
inequality to the effect that (T, φo) is “non-characteristic”, then there exists
a solution of the system (1) manifesting that initial data, and that solution
is unique up to gauge transformations12. Clearly, this is the closest one could
reasonably expect to an initial-value formulation, in the presence of gauge
freedom.

Gauge Conditions

There is a standard technique for demonstrating that certain classes of
systems of partial differential equations have an initial-value formulation up
to gauge, in the sense described above. This technique involves introducing
what are called “gauge conditions” — certain additional equations imposed
on the fields of the system. These additional equations can be purely al-
gebraic (i.e., requiring passage to a subbundle of the original bundle B),

12In more detail, we require, for existence, that there exist a solution in some neighbor-
hood of T . For uniqueness, we require that, given two such solutions in neighborhoods,
there exists a gauge transformation that leaves the initial data (T, φo) invariant (and so,
in particular, that leaves the submanifold T pointwise invariant), and that sends the first
solution to one that coincides, in some neighborhood of T , with the second.
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purely differential (i.e., requiring a simple enlargement of the system (1)) or
some combination of the two. The idea is to choose these equations such
that, at least locally, they have the following two properties: i) Given any
solution of the original system, (1), these additional equations can always
be achieved by some suitable gauge transformation; and ii) the system that
results from combining the original system, (1), with these additional equa-
tions does have an initial-value formulation in the traditional sense, i.e., that
described in Sect. 2. Note that these additional equations cannot themselves
be gauge-invariant: Indeed, if they were, then neither of the two conditions
above could hold. The gauge transformation whose existence is demanded by
property i) need not be unique. The initial-value formulation demanded by
property ii) can be achieved in a variety of ways. For example, the additional
equations can, among other things, create or destroy constraints, turn some
of the original differential equations in (1) into identities, or cause the ap-
pearance of a hyperbolization when there was none before. Clearly, if we can
manage to find gauge conditions having the two properties above, then our
system does have, in the sense described above, an initial-value formulation
up to gauge. We should emphasize, however, that such gauge conditions are
by no means necessary. There could well be a system of partial differential
equations that has an initial-value formulation up to gauge, and yet for which
there exist no suitable gauge conditions whatever. Here are two examples of
gauge conditions.

Consider the Maxwell system, with fields Fab, Aa, and equations (2), (3),
and (14). The gauge transformations of interest here are given by addition
to Aa of the gradient of a smooth scalar field on M . Consider the gauge
condition given by

∇aAa = 0. (22)

This equation satisfies the two properties given above. Indeed, given any so-
lution of (2), (3), and (14), the gauge condition (22) can always by achieved
by some transformation. [The gauge scalar field must be chosen to satisfy
the wave equation with a suitable source.] Furthermore, the system that re-
sults from combining Eqns. (2), (3), and (14) with (22) does indeed have an
initial-value formulation. [The vector potential, Aa, now satisfies the wave
equation.] So, Eqn. (22) is a suitable gauge condition: It yields, for this
Maxwell system, an initial-value formulation up to gauge. This gauge condi-
tion is purely differential. The gauge transformation to achieve (22) is never
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unique. Inclusion of Eqn. (22) with Eqns. (2), (3), and (14) neither creates
nor destroys constraints; nor does it render any of the original equations
identities. However, (22) does give rise to a hyperbolization where there was
none before. Eqn. (22) is, of course, the familiar Lorentz gauge condition in
Maxwell theory.

As a second example, consider the Einstein system, given by (4)-(6). The
gauge transformations of interest in this case are the M -diffeomorphisms.
Fix any totally symmetric tensor field W abc = W (abc) on M such that at each
point of M there exists a covector na (and, hence, an open set of na) such
that the combination naW

abc is positive-definite. Now consider the following
gauge conditions:

W abcgbc = 0, (23)

(∇mW abc)gbc = 0. (24)

Note that these equations are purely algebraic in the fields: Eqn. (23) is
algebraic in the metric gab alone; while (24) is algebraic in (gab,∇a). Eqn.
(24) is, of course, merely the result of combining Eqns. (23) and (4). To
understand what Eqn (23) means, consider a particular choice of W abc, given
by W abc = u(ahbc), where ua is any nowhere-vanishing vector field, and hbc any
positive-definite metric. This choice indeed satisfies the positive-definiteness
condition above, e.g., for na = ubhab, where hab denotes the inverse of hab.
For this particular W abc, Eqn. (23) requires that gabu

b be a certain multiple
of the fixed vector ubhab. Think of ub as a “time-direction”. Then Eqn. (23)
fixes the “time-time” and “time-space” components of the metric gab. Thus,
in this special case, the gauge condition (23) is a version of the familiar lapse-
shift gauge in the traditional treatment (ref) of the initial-value formulation
for general relativity.

There are many other possible choices for the W abc above. Another choice,
for instance, is W abc = u(ahbc), where hab is Lorentz-signature and ua is h-
timelike. But note that we cannot choose hbc = gbc, for we did not permit
W abc to depend on the space-time metric. In fact, what follows is actually
true for a class of gauge conditions more general than that given above.
This class is described as follows. Fix any vector-valued function, va, which
depends, at each point of M , algebraically on the value there of the space-
time metric gab and of some additional tensor fields. Let this function be
such that ∂(va)/∂(gbc) = W abc is totally symmetric, and satisfies the positive-
definiteness condition above. The new gauge conditions are now those that
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result from replacing Eqn. (23) by the equation va = 0, and retaining Eqn.
(24) as given. This is indeed a generalization, for the original formulation
(23)-(24), arises as the special case va = W abcgbc.

We turn now to the issue of whether, for the Einstein system, Eqns.
(23)-(24) qualify as a set of gauge conditions, in the sense above.

Can Eqns. (23)-(24) be achieved, at least locally, via a gauge transfor-
mation? Fix a solution, (gab,∇a), of the Einstein system. Then, by virtue of
Eqn. (4) of that system, it suffices to achieve only (23), for Eqn. (24) then
follows. The statement that a diffeomorphism, ψ, on M achieve (23) is

W abc(∇ψ)b
d′(∇ψ)c

e′gd′e′ = 0, (25)

where primed indices refer to the image point, x′ = ψ(x), and gd′e′ denotes
the metric evaluated at this point. We may understand this equation in the
following manner. Consider the fibre bundle over M whose fibre, over each
point x ∈ M , is a copy of M itself. Then the diffeomorphism ψ can be
regarded as a cross-section of this bundle; whence (25) becomes a first-order
equation on this cross-section. But this equation is not even quasilinear!
Consider, however, its linearized version. [See Appendix B.] In this version,
the diffeomorphism ψ is replaced by its generator, vector field ξa on M ;
and Eqn. (25) is replaced by an equation on this ξa, with principal part
W abc∇b(gcdξ

d). But this linearized equation does admit an initial-value for-
mulation: Its only constraint is zero, and it admits a hyperbolization, by
virtue of precisely the conditions imposed above on W abc. Thus, while we
cannot guarantee solutions of the full system (25), we can guarantee solutions
of its linearized version. This behavior — a first-order system of partial differ-
ential equations that is not even quasilinear, whose corresponding linearized
system is not only quasilinear but actually has an initial-value formulation
— seems surprising. It seems likely that, at least in the present case, the
initial-value formulation for the linearized system will imply appropriate so-
lutions also of Eqn. (25). It would be of interest to try to prove this — either
for the present case, or more generally. A possible method might be first to
choose a diffeomorphism ψ that makes the right side of Eqn. (25) “small”,
and then perform a sequence of corrections via generators ξa of infinitesimal
diffeomorphisms.

Note that for the Einsein system, in contrast to the Maxwell example
above, we only expect to be able to satisfy the gauge conditions via a gauge
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transformation when the original cross-section φ satisfies the field equations,
(4)-(6).

Does the system whose fields consist of (gab,∇a) subject to the algebraic
conditions (23)-(24), and whose equations consist of (4)-(6), have an initial-
value formulation? The constraints of this system, as is not hard to check,
are integrable and complete. But does this system admit a hyperbolization?

In order to answer this question, let us return briefly to the original Ein-
stein system, i.e., that without (23)-(24). For this system, the dimension of
the space of equations (4)-(6) is 110 (= 40 + 60 + 10), while the dimension
of the space of consistency conditions (7) is 64 (= 30 + 30 + 4). This leaves
46 (= 110 - 64) dynamical equations. But the space of independent variables
has dimension 50 (= 10 + 40). This excess — four more independent vari-
ables than equations — reflects the diffeomorphism gauge freedom inherent
in the Einstein system. Let us now see how this arithmetic is affected by the
imposition of the gauge equations (23)-(24). The dimension of the space of
equations is reduced by the gauge equations by 40 (= 16 (contraction of (4)
with W bcd) + 24 (contraction of (5) with W cdn)). The dimension of the space
of consistency conditions is reduced by 24 (= 12 (from (4)) + 12 (from (5))).
Hence the dynamical equations are reduced in dimension by 16 (= 40 - 24).
But the independent variables are reduced in dimension by 20 (= 4 (from
(23)) + 16 (from (24))). Thus, imposition of the gauge equations (23)-(24)
reduces dimension of the dependent variables by four more than it reduces
that of the dynamical equations. In other words, in the Einstein system,
supplemented with the algebraic equations (23)-(24), the number of depen-
dent variables precisely matches the number of dynamical equations. What
this means is that, for this system, there are equations that give the “time-
derivatives” of all the fields, in terms of their values and space-derivatives.
Naively, then, one would expect an initial-value formulation for this system.

But is there really such a formulation, i.e., does there actually exist a
hyperbolization for this system? This is, apparently, an open question. But
it seems extremely likely that there exists none. Here is a possible line
for a proof. Suppose for a moment that we replace Eqns. (5)-(6) by the
single equation Rabc

d = 0 That is, we replace the Einstein system by that
of “special relativity”. This replacement merely adds to the Einstein system
some additional constraints, from which it follows that every hyperbolization
(if any) of the Einstein system must also be a hyperbolization of this new
system. In this new system, the constraints continue to be integrable and
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complete, and, just as above, there is a matching between dimensions of the
space of dynamical equations and dependent variables. However, in this case,
there is a hyperbolization. The corresponding quadratic form is

na[W
abcgbmgcns

m
rss

′n
pq + uaδgrsδ

′gpq] V rspq (26)

where V rspq = V (pq)(rs) is any tensor positive-definite in its two symmetric
index-pairs and ua is any timelike vector. It now suffices to prove two as-
sertions: i) that the expression (26) represents the only hyperbolization for
this new system, and ii) that the expression (26) is not a hyperbolization of
the constrained Einstein system. Both of these assertions seem plausible. It
would be of interest to prove, by this method or otherwise, that this con-
strained Einstein system, (4)-(6), (23)-(24), has no initial-value formulation.

These two examples illustrate the point that imposing gauge conditions on
systems of partial differential equations with gauge freedom is potentially a
complicated business. The basic problem is that there is so much variety: The
gauge conditions themselves can be algebraic or differential; these conditions
can be achieved by a gauge transformation in a variety of ways; and these
conditions can restore to the system an initial-value formulation through a
variety of mechanisms. It appears to be necessary to deal with systems of
equations on a case by case basis.

We shall now introduce an alternative method for determining that a
given system of first-order, quasilinear partial differential equations has an
initial-value formulation up to gauge. Our method is systematic, relatively
simple (although not as simple as one might have hoped), and manifestly
gauge-invariant.

Fix a first-order, quasilinear system, (1) of partial differential equations,
and let this system have some gauge group. The idea is to introduce certain
additional geometrical structure on the bundle manifold B, this structure
consisting, at each point of B, of a vertical flat σ, i.e., of a subspace of the
vector space of vertical vectors at that point of B. We demand that this field
of flats be smooth in its dependence on point of B. We further demand that
this field be integrable, so the integral surfaces of σ give a foliation of each
fibre by submanifolds; and each of these submanifolds has, for its tangent
space at each of its points, precisely the flat σ at that point. In all the
examples of which I am aware, these flats are also invariant under the action
of gauge transformations on the system (1), although this invariance is not
actually needed in what follows.
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Think of the flat σ, at a fixed point of B, as representing “physical direc-
tions” in field-space. Then the vertical vectors not lying in this flat are to be
thought of as having “unphysical” (i.e., gauge) components. A crucial point
here is that we do not attempt to single out any particular complementary
subspace, i.e. any space of specifically “unphysical directions”. In the case
in which the gauge group consists only of the identity (as well as in certain
other cases with small gauge group), the flat σ, at each point of B, will con-
sist of all vertical vectors at that point, whence the integral surfaces of the
flats will be precisely the fibres of the fibre bundle B.

Existence

Recall that a first-order, quasilinear system of partial differential equa-
tions has (subject to some resolution of the gap discussed in Appendix A) an
initial-value formulation provided the following four conditions are satisfied:
i) its constraints are integrable, ii) its constraints are complete, iii) it admits
a hyperbolization, and iv) some single open set of covectors na suffices for
both completeness and the hyperbolization. The idea is to demonstrate ex-
istence of an initial-value formulation up to gauge (subject to the same gap)
by suitably modifying, taking into account the flats σ, these four conditions.

The first condition, integrability of the constraints, remains unchanged.
For the second condition, recall, from Sect. 2, that completeness means
that, for every na in some open set of covectors, whenever νA is such that
νAnak

Aa
α annihilates all vertical vectors, then νA = cA

ana for some constraint
cA

a. We now replace this second condition with what we call σ-completeness:
For every such na, whenever νAnak

Aa
α annihilates all vectors in the flat σ,

then νA = cA
ana for some constraint cA

a. Note that σ-complete implies
complete; and, furthermore, that σ-completeness follows from completeness,
together with the property: If νAnak

Aa
α annihilates all vectors in σ, then

it annihilates all vertical vectors. The condition of σ-completeness means
physically that none of the equations serves to restrict the “time-derivatives”
only of unphysical degrees of freedom. The third condition is modified to
the following. We demand that there exist, at each point of the bundle
manifold B, a σ-hyperbolization, i.e., a tensor hAβ at that point such that the
combination nahAβkAa

α, applied only to vectors in σ, is symmetric, and, for
all na lying in some open set, is positive-definite. This is precisely the same
as the original definition of a hyperbolization, except that now the quadratic
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form is restricted to σ, i.e., to “physical degrees of freedom”. In particular,
every hyperbolization is a σ-hyperbolization. Finally, the fourth condition
remains unchanged. Thus, what we have done here is expand the notion of
completeness, and contract that of a hyperbolization, to take account of the
flats σ.

We shall show shortly that, under these four conditions, as broadened in
the paragraph above, existence holds for the system (1) of partial differential
equations. But first, we give two examples.

Consider first the Maxwell system with vector potential — the system
with equations (2), (3), and (14) and gauge the addition to Aa of the gradient
of a scalar field — in a general curved spacetime. Now fix any smooth,
nowhere vanishing timelike vector field ua on the manifold M . Let, at each
point of B, the flat σ at that point consist of all vertical tangent vectors,
(δFab, δAa), at that point satisfying uaδAa = 0. Thus, the flats in this case
are nine-dimensional (in ten-dimensional fibres). These flats are smooth and
integrable, the integral surfaces being those of constant uaAa. Furthermore,
these flats are gauge-invariant, for the action of a gauge transformation,
within a fixed fibre, is to send the point (Fab, Aa) to the point (Fab, Aa +wa),
where wa is some fixed vector (which, however, is different for different gauge
transformations). But clearly these leave the integral surfaces surfaces above,
and so the flats σ, invariant.

We now claim that this Maxwell system, with these flats σ, satisfies the
four conditions given above. Indeed, the first condition, integrability, was
already shown in Sect. 2; as was completeness of the system (2)-(3). Hence,
the second condition, σ-completeness, (with the open set of covectors na

consisting of the timelike ones): Given any tensor νab = ν [ab] and any timelike
na, such that νabnaδAb = 0 for all δAb satisfying ubδAb = 0, then we have
νabna = 0. But this assertion is true, for the vanishing of νabnaδAb for all δAb

with ubδAb = 0 implies that νabna is a multiple of ub; whence, contracting
with nb and using the timelike character, that νabna = 0. For the third
condition, existence of a σ-hyperbolization, consider the quadratic form given
by the usual Maxwell one, (11), on the Maxwell field, plus the additional term
n[aδAb]u

agbcδ′Ac This expression i) arises from (14) (for it is the contraction
of n[aδAb] with something); and, with δAb and δ′Ac restricted by ubδAb =
ucδ′Ac = 0, is ii) symmetric; and iii) positive-definite, whenever uana > 0.
The fourth condition is immediate (the appropriate open set of na consisting,
say, of the timelike ones with uana > 0).
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Consider, as a second example, the Einstein system, (4)-(6) with diffeo-
morphism gauge. Recall that, at a general point, (gab,∇a), of the fibre over
base point x ∈ M , vertical tangent vectors are represented by (δgab, s

m
ab),

where sm
ab = sm

(ab) represents the “change in the derivative operator”. Let
the flat σ at that point consist of those vertical vectors satisfying gabsm

ab = 0.
Thus, the flats in this case are forty-six-dimensional (in fifty-dimensional fi-
bres). These flats are smooth and integrable. To see what the integral
surfaces are, fix any derivative operator, ∇̃a, at x, and represent ∇a there by
the tensor, Cm

ab, expressing the difference between ∇a and ∇̃)a. The inte-
gral surfaces of the flats σ within this fibre are now given by the surfaces of
constant gabCm

ab. [Note that these surfaces are independent of the choice of
the auxiliary operator ∇̃a. However, which constant vector represents which
surface will, of course, depend on this choice.] That these flats are gauge-
invariant follows from the fact that they are defined without reference to any
“external objects”.

We now claim that this Einstein system, with these flats σ, satisfies the
four conditions given above. The first condition, integrability, was already
shown in Sect. 2; as was completeness of the system (4)-(6). Hence, the
second condition, σ-completeness, requires (with the open set of covectors
na consisting of the timelike ones): Given any tensors νabcd = ν [ab](cd) and
νab = ν(ab) and any timelike na such that

νabcdnas
m

bcgmd + 1/2νab(nmsm
ab − nbs

m
am) = 0 (27)

for all sm
ab = sm

(ab) with gabsm
ab = 0, then Eqn. (27) holds for all sm

ab =
sm

(ab). [Here, the left side of Eqn. (27) is the equation that results from
replacing the derivative of ∇ by nas

b
cd in Eqns. (5) and (6), contracting with

νabcd and νab, respectively, and adding.] To see that this assertion is true,
note that the hypothesis implies that nr[ν

r(ab)sgsm +1/2δr
mνab−1/2δ(a

mνb)r]
is a multiple of gab. Contracting with nanb and using the timelike character,
we conclude that that multiple is zero. But this is precisely the statement
that Eqn. (27) holds for all sm

ab = sm
(ab). For the third condition, the

existence of a σ-hyperbolization, we proceed as follows. Let sm
ab = sm

(ab)

and s′mab = s′m(ab), be any two tensors, and na and ua any two vectors. We
then have the following identity, whose proof is straightforward but a little
tedious:

s′(cd)nunΣ(ab)[−2n[msm
a]b + 4n[qs

m
b](agp)mgpq]− s′(cd)

mun[s(ab)[mnn]] (28)
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= s(ab)ms′(cd)n[−(upnp)g
mn + 2u(mnn)]− n(asb)m

ms′(cd)nu
n, (29)

where we have freely raised and lowered indices with the metric gab, and
where the symbol “Σ(ab)” is the instruction to symmetrize over the indices
a and b. Now, the expressions in square brackets on the left involve only the
combinations that result from the equations, (5)-(6), of the Einstein system
by replacing the derivative of∇ by nas

b
cd. The last term on the right vanishes

for sm
ab lying in the flat σ, for this implies sbm

m = 0. Now fix timelike ua, and
let na also be timelike, with uana > 0. Then the right side, contracted with
(gac + 2uauc/(umum))(gbd + 2ubud/(umum)), is the required quadratic form
for the σ-hyperbolization. Finally, the fourth condition is again immediate,
with, again, the open set of na consisting of the timelike ones with uana > 0.
Thus, we have verified that these flats σ for the Einstein system satisfy our
four conditions above. It is perhaps a reasonable conjecture that these flats
are the unique ones for the Einstein system satisfying our conditions. It
would be most interesting to prove this.

We now return to the general case. Why do we not not further require that
the hyperbolization hAα of the third condition also be invariant under gauge
transformations? We would if we could, but, unfortunately, such invariance
cannot be achieved in examples (e.g., the Einstein system). Note that the
conditions above refer only to the flats σ, and not at all to gauge trans-
formations. The gauge transformations enter at this stage only indirectly,
through our inability to find a hyperbolization that is symmetric when ap-
plied to all vertical vectors. Note, incidentally, σ-completeness favors larger
flats σ, while existence of a σ-hyperbolization favors smaller. The final flats
represent a compromise between these competing demands.

The condition of σ-completeness has several immediate, and very use-
ful, consequences. Let us adopt the convention, for purposes of this para-
graph that a σ, appended to any covariant Greek index, means “applied
only to vectors in the flat σ”. Then σ-completeness implies in particular:
naνAkAa

ασ = 0 implies naνAkAa
α′ = 0. [Recall that a prime on a covariant

Greek index means “applied only to vertical vectors”.] The first consequence
is this: Whenever νAkAa

ασ = 0, then νA = 0. [To see this, note that the
hypothesis implies νAnak

Aa
ασ = 0 for every na; and so, by σ-completeness,

that νAnak
Aa

α′ = 0 for every na in some open set; and so, that νAkAa
α′ = 0;

which in turn implies νA = 0.] What this means is that no equation of the
system has the property that, when restricted to physical degrees of free-
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dom, it becomes purely algebraic. We turn next to the constraints. First,
note that, quite generally, every constraint of the system (1), i.e., every ca

A

satisfying c(a
Ak|A|b)α′ = 0, is also automatically a σ-constraint, i.e., also sat-

isfies c(a
Ak|A|b)ασ = 0. But σ-completeness implies the reverse, i.e., that

every σ-constraint arises in this manner from some constraint of the orig-
inal system. [Indeed, let ĉ(a

Ak|A|b)ασ = 0. Contract with nanb to obtain
(naĉ

a
A)nbk

Ab
ασ = 0. Choosing na to lie in the open set, this condition now

implies, by σ-completeness, that (naĉ
a
A)nbk

Ab
α′ = 0; which, since this now

holds for all na in an open set, implies (ĉ(a
A)k|A|b)α′ = 0.] In addition,

again from σ-completeness, no nonzero constraint gives rise to the zero σ-
constraint. To summarize, σ-completeness implies that the equations of the
original system (1), as well as its constraints, go over, essentially unchanged
in number and character, when restricted to the physical degrees of freedom.

Fix a first-order, quasilinear system of partial differential equations, to-
gether with a smooth, integrable field of flats σ, satisfying the four condi-
tions (integrability, σ-completeness and existence of a σ-hyperbolization, for
a common open set of na) above. There is a key result to the effect that this
system must, for suitable initial data, manifest existence of solutions. This
result, in more detail, is the following. Let (T, φo) be initial data for this
system, so T is a submanifold of the base manifold M of codimension one,
and φo is a cross-section of the bundle B over T . Let these data satisfy all the
consistency conditions (7) arising from the constraints of the system. Let,
furthermore, these data be non-characteristic, in the sense that the normal na

to T at each point lies within the open set specified in the fourth condition.
Then there exists a solution φ of the system (1), defined in a neighborhood
of T , that reduces to the given data, φo, on T . The proof of this result will
emerge from the discussion that follows.

Consider, in this system, a submanifold, B̃, of B having the following two
properties: i) B̃ meets each fibre of B in a single integral surface of σ, and ii)
the projection mapping B̃ π→ M is a surjection onto M , i.e., every tangent
vector at every point of M is the image, under the derivative of this map,
of some tangent vector at some point of B̃. We remark that there are many
such submanifolds. Indeed, fixing any cross-section, φ, of B, the union of all
the σ-integral surfaces that meet φ[M ] is such a submanifold (and, in fact,
the unique one containing the image of this cross-section). Furthermore,
every such submanifold B̃ arises in this way. Next, note that every such
submanifold B̃ is itself also a bundle over the same base manifold M . In this
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bundle, the fibre over x ∈ M is the corresponding integral surface of σ in the
B-fibre over x. Note further that every cross-section of B̃ is automatically
also a cross-section of B; and that every cross-section of B — provided it lies
within the submanifold B̃ — is also a cross-section of the bundle B̃.

We now introduce a certain partial differential equation based on this
subbundle B̃ π→ M , namely, that which results from simply restricting our
original equation, (1), to B̃. That is, we regard a cross-section φ̃, of B̃ as a
cross-section also of the original bundle B, and, as such, impose on it Eqn.
(1). The result is a first-order, quaslilinear system of partial differential
equations, based on the bundle B̃. The “k” for this new system is simply the
restriction of the original kAa

α to σ, and the “j” the original jA; where both
of these are now evaluted on B̃ (since that is where the cross-section φ̃ lives).
We note that, by the discussion of σ-completeness above, none of the partial
differential equations, (1), of the original system are ”lost” (i.e., become al-
gebraic equations) on restriction to B̃. Hence, every solution of the restricted
equation, in B̃, is also, when regarded as a cross-section in B, a solution of (1).
We now claim that this new system of partial differential equations satisfies
the conditions of Sect. 2 for having an initial-value formulation. Indeed, this
is immediate. Integrability passes from the original system, (1), to the new
one because the two systems have the same constraints; σ-completeness and
the σ-hyperbolization yield completeness and a hyperbolization for the new
system.

Now consider our given initial data (T, φo), satisfying the consistency
conditions (7), and such that the normal, na, to T , at each of its points,
lies in the open set of given above. Extend this cross-section φo over T to
any cross-section over the entire base manifold M ; and then expand this
cross-section to a submanifold B̃ of B, in the manner described above. There
results a subbundle, B̃ π→ M , of our original bundle, B π→ M , and, as we have
seen above, this subbundle inherits, from (1), its own first-order, quasilinear
partial differential equation. Now, the original initial data, (T, φo), for (1)
is (since φ0[T ] ⊂ B̃, by construction) also initial data for this new system.
Furthermore, these initial data on B̃ also satisfy the consistency conditions
there (since the original initial data satisfied the consistency conditions for
(1), and since the two systems have precisely the same constraints). Hence,
since the equation in B̃ has an initial-value formulation, there exists a unique
solution, φ̃, of the B̃-equation manifesting these initial data. But, as we
remarked above, this φ̃ is also a solution of the original system, (1), in B. In
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short, the original initial data, (T, φo), in B admit a solution of (1).
This completes the proof of existence of solutions for systems of partial

differential equations satisfying the four conditions above. Note that we do
not in general have uniqueness, because we had the freedom, in the argu-
ment above, in the choice of the subbundle B̃. Note also that the gauge
transformations themselves nowhere entered the discussion above (at least
not directly: They did enter indirectly through the flats σ).

Uniqueness

Under certain further conditions, the solution obtained above will be
unique, up to gauge. To make things more explicit, let us restrict consider-
ation, for the moment, to the case in which the gauge is that of diffeomor-
phisms. What follows can be generalized to other gauge groups. In any case,
we have, under this assumption, the tensor δαa···c

m (with n indices a · · · c) of
Eqn. (16), which describes the lifting of any smooth vector field ξa on M to
a gauge vector field ξα on B.

The idea is to consider two extensions of the given cross-section φo over T
to subbundles B̃ of B. We must show that there exists a gauge transformation
sends one such subbundle to the other. In more detail, we shall rewrite “sends
one such subbundle to the other” as a system of partial differential equations
on the gauge transformation itself. This system will turn out to be nth

order, with principal part δαa···c
m. We will then demand that this system

have an initial-value formulation. This system, when rendered first-order,
will automatically have its constraints integrable (as systems usually do!).
But we shall have to impose on it (as appropriate conditions on δαa···c

m)
completeness and existence of a hyperbolization. These conditions, in more
detail, are the following.

First, we shall demand that, for every covector na in our open set, we have:
Given any να that annihilates all vectors in σ and satisfies ναδαa···c

mna · · ·nc =
0, then να annihilates all vertical vectors. This is a kind of completeness, but
now referring to the action of the gauge group13. It not only has a form
similar to σ-completeness, but also has similar consequences. The following,

13In fact, it appears that, in practice, this condition may provide the simplest route to
“finding”, appropriate flats σ, given only some partial differential equation (1), and the
action on the bundle B of the diffeomorphisms.
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for example, are direct consequences of this condition (with proofs completely
analogous to those for σ-completeness): i) For any να that annihilates all
vectors in σ and satisfies ναδαa···c

m = 0, we have that this να annihilates
all vertical vectors; ii) For ca

α annihilating all vectors in σ, and satisfying
c(a

αδ|α|c···d)
m = 0, then ca

α annihilates all vertical vectors.
Second, we shall demand that there exist a tensor Hn

d···e
α = Hn

(d···e)
α,

vanishing when contracted with any µα ∈ σ, and a tensor Sn
d···eab···c

m =
Sn

(d···e)a(b···c)
m, with symmetries Sn

d···e(ab···c)
m = 0, such that the combination

Hn
d···e

αδαab···c
m + Sn

d···eab···c
m (30)

is symmetric under interchange of the index-pairs ”n d · · · e” and ”m b · · · c”,
and, contracted with any covector na lying in our open set, is positive-definite
in these index-pairs. This H will turn out to be an effective hyperbolization
for our system of equations on the gauge transformation.

As we shall see shortly, these two conditions taken together guarantee, in
an appropriate sense, uniqueness of solutions up to gauge.

Let us return to the example of the Einstein system. Recall that the
tensor δαa···b

m in this case has rank two, and is given by Eqn. (20). The flats
are given by tangent vectors, (δgab, s

m
ab), satisfying gabsm

ab = 0; and the
open set of na is that consisting of the timelike covectors. This system, we
claim, satisfies the two conditions above. The first asserts, in this example,
the following. For every timelike na, if tensor νab

m (i.e., να) is such that νab
m

is a multiple of gab (i.e., νασ = 0) and νab
mnanb = 0 (i.e., ναδαab

mnanb = 0),
then νab

m = 0. But this assertion, clearly, is true. For the second condition,
consider the choices

Hn
drs

m = −(gmn + umun/(uquq))g
rsud, (31)

Sn
dab

m = (gmn + umun/(u
qua))u

[agb]d, (32)

where the index combination ”mrs” in Hn
drs

m stands for ”α”. These two
clearly satisfy the symmetries given above. Furthermore, the quadratic form
given by (30) becomes (gmn + umun/(u

quq))[u
agdb − 2ga(dub)], which has the

requisite symmetry and positive-definite properties. Thus, the Einstein sys-
tem, (4)-(6), satisfies our two conditions.

The key result is that the two conditions above imply uniqueness, up to
gauge, of our solution of (1) with the given initial data (T, φo). The method,
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as discussed earlier, is to show that given any two extensions of the given
cross-section, φo, over T to a subbundles, B̃ and B̃′, of B, then these two
subbundles are gauge-related.

It is convenient to begin with the “infinitesimal argument”, which is some-
what easier conceptually. Fix any cross-section, φ, of the original bundle B,
and any vertical field, µα, defined at points of φ[M ]. Consider now the fol-
lowing partial differential equation

[δαa···c
m∇̃a · · · ∇̃cξ

m + · · ·]− (∇φ)a
αξa − µα ∈ σ (33)

The term in square brackets on the left in Eqn. (33) is precisely the expres-
sion, (16) for the gauge vector field defined by ξa. [Here, ∇̃a denote some
arbitrary, fixed derivative operator on the manifold M .] The second term on
the left in (33), which is just the lift of ξa to the cross-section, serves to make
the sum of the first two terms vertical. That is, Eqn. (33) is the assertion
that the difference between the vertical vector given by the first two terms on
the left and the given vertical vector µα lies in the flat σ. This is a first-order,
quasilinear system of partial differential equations on the vector field ξa on M
(as is seen, e.g., by contracting (33) with covectors in the fibre orthogonal to
σ). The geometrical meaning of this equation is the following. Think of the
given cross-section, φ, as defining some subbundle, B̃, of the original bundle
B. Think of the vertical vector µα as representing the vertical “connecting
vector” from B̃ to some nearby subbundle B̃′. Then this µα is meaningful
only up to addition of vertical vectors tangent to B̃′, i.e., only up to vectors
lying in the flat σ. [In other words, if we change µα by addition to it of a
vector in σ, then this new µα connects to the same nearby subbundle B̃′.]
Eqn. (33), then, is the assertion that the vertical part of the gauge vector
field generated by the vector field ξa on M send B̃ to B̃′.

Eqn. (33) is a system of n-th order, quasilinear partial differential equa-
tion. [The “vector space of equations” is the quotient space of the vector
space of vertical vectors by the vector subspace σ.] We now claim: By virtue
of the two conditions above, this system has an initial-value formulation. The
first step is to convert (33) to a first-order system. To this end, we introduce,
in addition to the original vector field ξm, tensor fields ξa

m, ξab
m, · · · ξa···cm,

each totally symmetric in its covariant indices, and having covariant indices
ranging in number from from one to (n− 1). On these fields, we now impose

35



the following three sets of equations:

∇̃aξ
m = ξa

m, · · · , ∇̃(aξb···c)
m = ξa···cm, (34)

∇̃[aξb]
m = · · · , · · · , ∇̃[aξb]···c = · · · , (35)

[δαa···c
m∇̃aξb···cm + · · ·]− (∇φ)a

αξa − µα ∈ σ. (36)

Eqn. (34) consists of (n − 1) equations, which allow us to “interpret” each
of ξa

m, · · · , ξa···cm as the symmetrized derivative of its predecessor, and so,
ultimately, as a symmetrized derivative of ξm. Eqn. (35), consists of the
(n − 1) equations resulting from taking the curl of each equation in (34).
Thus, Eqns. (35) are the integrability conditions for Eqns. (34). Finally,
Eqn. (36) is precisely Eqn. (33), rewritten in first-order form.

Note that (34)-(36) is indeed a first-order, quasilinear system of partial
differential equations, on the n tensor fields ξm, ξa

m, · · · , ξa···cm. In the case
of Eqn. (36), the equation lies in the vector space given by the quotient of
the space of vertical vectors by the subspace consisting of those vectors lying
in flat σ. This system, we now claim, satisfies the conditions, of Sect 2, for
having an initial-value formulation. To see this, consider first the equations
consisting of all (n − 1) in (34) and all but the last in (35). These (2n − 3)
equations express the derivatives of each of the the first (n− 1) of our fields
(i.e., all but the last one, the ξa···cm appearing in (36)) algebraically in terms
of these fields. This system has an obvious initial-value formulation. [The
constraints correspond to taking the curls of (34) and of (35), the corre-
sponding integrability conditions being (35) and identities, respectively. A
hyperbolization is immediate.] The critical field is the final one, ξa···cm, and
the equations on it are the last equation in (35), and Eqn. (36). The first of
these equations has a constraint corresponding to taking its curl. The cor-
responding integrability condition is an identity (by the choice of right-hand
side of the last equation in (35)). A constraint for (36) is represented by a
tensor ca

α such that ca
ασ = 0, and such that c(a

αδ|α|b···c)m = 0. But our first
condition above, completeness, implies that the only such ca

α is zero. Thus,
the equations on ξa···cm are integrable and complete. But these equations
also have a hyperbolization, namely the H of (30), for our second condition
is precisely the statement that this H has the requisite properties. Thus, we
have shown that the system (34)-(36) satisfies the conditions of Sect. 2 for
an initial-value formulation.
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Next, let there be given initial data, (T, φo), satisfying the consistency
conditions (7) and with the normal na to T lying, at each of its points, in
our open set. Let the given vertical field µα be chosen to vanish on (T, φo).
Now choose, on T , initial data for the system (34)-(36) with all the fields
ξm, · · · , ξa···cm vanishing there. These data clearly satisfy all the consistency
conditions for the system (34)-(36). So, there exists a solution of this system.
That is, there exists a vector field ξm on M whose corresponding gauge vector
field, ξα, coincides with the given vertical µα on the subbundle B̃, and leaves
invariant the given initial data, (T, φo). We have shown, then, uniqueness of
solutions up to “infinitesimal” gauge.

There follows immediately a corresponding result for the full gauge group.
Consider the fibre bundle over M , whose fibre, over each point x of M , is a
copy of M itself. Then a cross-section of this bundle is precisely a smooth map

ψ from M to M . Now demand that the gauge transformation B Ψ→ B arising
from this ψ send the submanifold B̃ to B̃′. This is an n-th order, quasilinear
differential equation on the cross-section ψ, an equation having precisely the
principal part of Eqn. (33). Just as with (33), we convert this to a first-order
partial differential equation (so the fields will now be “point of M”, together
with certain tensors that can be interpreted as the first (n − 1) derivatives
of the smooth map ψ). These equations will have precisely the character
of the system (34)-(36), and for the same reason will have an initial-value
formulation. We conclude that there exists an M -diffeomorphism whose
corresponding gauge transformation sends the submanifold B̃ to B̃′ — and,
therefore, a diffeomorphism that sends the one solution φ of (1) to the other
solution φ′.

This completes the demonstration of uniqueness of solutions of (1) up
to diffeomorphism gauge, under the two conditions listed above. In partic-
ular solutions of the Einstein system are unique up to the diffeomorphism
gauge. Note that even though the diffeomorphism gauge group is infinite-
dimensional, all manifolds in the present treatment are finite-dimensional.
We also remark that the gauge transformation generated by the argument
above is unique.

Finally, we note that similar considerations apply to certain other gauge
groups. The crucial property we needed, above, is that the gauge transfor-
mations be represented by cross-sections of a suitable bundle, and that the
requirement that a gauge transformation send one submanifold B̃ to another
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be a system of quasilinear partial differential equations on cross-sections of
that bundle. An example is the Maxwell system considered earlier, with flats
σ given by uaδAa = 0. In this case, the corresponding bundle has fibre, over
each point x of M , consisting of the reals (the possible values of the gauge-
potential). The conditions analogous to those above again hold; and again
we conclude uniqueness of solutions, up to gauge transformations.

5 Conclusion

Fix any first-order, quasilinear system, (1), of partial differential equations,
on which there acts gauge transformations. We have shown that, under
certain conditions, this system manifests an initial-value formulation up to
gauge, i.e., that, given suitable initial data, solutions for that data exist,
and are unique, up to gauge transformations. These “certain conditions”,
while more complicated than one might wish, are at least algebraic in the
coefficients of the equation. The key to the proof is to introduce flats σ
representing “physical directions” in the fibres of B. To prove existence, we
effectively restrict the original equation, (1), to “physical degrees of freedom”.
Then the conditions in this case require that the equation, so restricted,
manifest completeness of its constraints, and a hyperbolization. To prove
uniqueness, we write out a partial differential on a gauge transformation,
which guarantees that that that gauge transformation send one solution to
another. The conditions in this case guarantee that this system has an initial-
value formulation, i.e., that it have completeness of its constraints, and a
hyperbolization. Of course, this scheme is applicable, in particular, to the
Einstein system.

In the example of the Einstein system, the flats σ that satisfy our condi-
tions are those usually associated with what is called “harmonic gauge”. For
the Maxwell system, with “Coulomb gauge”. But note that we do not directly
impose any gauge conditions on the fields. In particular, we do not impose,
on initial data for either system, any equations beyond the consistency con-
ditions (7) that flow directly from (1). Note that, in the present scheme, the
harmonic gauge for the Einstein system is placed on the same footing with
the Coulomb gauge for the Maxwell system, for both these gauge conditions
are algebraic in the fields. Yet, one might have expected the former to be
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more analogous to the Lorentz gauge for the Maxwell system.
Are there, besides the Einstein system, other systems of partial differential

equations with diffeomorphism gauge freedom that satisfy the conditions of
the previous section? I am aware of just two.

One such system, it turns out, is that of special relativity. The fields are
the same as those for the Einstein system: a Lorentz-signature metric gab

and a derivative operator ∇a. However, the equations for this system consist
of (4) together with Rabc

d = 0 (the latter replacing (5)-(6) for the Einstein
system). That is, this system is merely the Einstein system, augmented
with some additional “constraint equations” Note that here the Minkowski
metric is taken to be “dynamical”, resulting in a system subject to the gauge
freedom of diffeomorphisms. The M -diffeomorphisms act on (gab,∇a) in the
same manner as in the Einstein system, and so in particular we have the same
tensor δαab

m of Eqn. (20). For the flats σ, choose precisely the same ones as
for the Einstein system. We now claim that this system — special relativity
— satisfies all the conditions given in Sect. 4. For the σ-hyperbolization hAα

and the Hn
dab

m choose precisely the same objects as for the Einstein system.
The demonstrations that the conditions are satisfied is virtually identical to
the corresponding demonstrations for the Einstein system.

Here is a second example. Let the fields, on the base manifold M , consist
of a nowhere vanishing vector field ua together with a tensor field αb

cd. Let
the equation be Luα

b
cd = 0, i.e., the requirement that the Lie derivative

of αb
cd by ua vanish. This system has an action of M -diffeomorphisms as

gauge: These diffeomorphisms act on (ua, αb
cd) in the usual way, and this

action clearly preserves the equation of the system. Note that the order of
this action is one, in contrast to the order, two, for the Einstein system. We
now claim that this system satisfies all the conditions of Sect. 4. First note
that the only constraint of this system is zero. Let, at each point of the
bundle manifold B, the flat σ consist of those tangent vectors, (δua, δαb

cd),
with δua = 0. This field of flats is clearly smooth and integrable. Let the
open set of covectors na, at each point of B consist of those with nau

a > 0.
Then σ-completeness becomes: Let na satisfy nau

a > 0, and let νb
cd be any

tensor such that the expression

νb
cd[umnmδαb

cd + αm
cdδu

bnm − αb
mdδu

mnc − αb
cmδumnd] (37)

vanishes for all (δua, δαb
cd) with δua = 0. Then this expression vanishes

for all (δua, δαb
cd). But this assertion is true (as follows immediately from
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the fact that the hypothesis implies, using umnm > 0, that νb
cd = 0). For

the σ-hyperbolization, let hAα be represented by the tensor hm
rs

b
cd given

by hm
rs

b
cd = pmbp

rcpsd, where pab is any positive-definite metric, and pab

its inverse. The completeness condition for the gauge transformation reads:
If (νa, νb

cd) (i.e., να) is such that νb
cd = 0 (i.e., νασ = 0) and such that

(nsu
s)νm = 0 (i.e., nsναδαs

m = 0), then (νa, νb
cd) = 0. This is immedi-

ate. Finally, for the hyperbolization for the gauge transformation, choose
Hnα such that Hnαδφα = pnaδu

a, and Sn
a
m = 0. Then the corresponding

quadratic form, (30), is given by uapnm; and this form indeed has the required
symmetry and positive-definiteness.

Thus, the system above has an initial-value formulation, up to the gauge
freedom of diffeomorphisms. This result, by the way, is already clear geomet-
rically: Use the diffeomorphisms to “fix” the field ua, whence the equation,
which simply requires that αb

cd be invariant under u-motions, determines
αb

cd. There are similar examples in which the field αb
cd is replaced by a ten-

sor field with general index structure. Furthermore, the single field αb
cd could

be replaced by any number of tensor fields, each with some index structure, at
the same time replacing the single equation Luα

b
cd = 0 by the equations that

specify that each of these fields has vanishing Lie-derivative by ua. Still more
generally, there could be imposed various algebraic or differential equations
(such as, e.g., the vanishing of a contraction, or of the exterior derivative of
a form) on the fields, and furthermore the Lie derivative of each field could
be equated, not to zero, but rather to some expression algebraic in the fields.

Further examples can be obtained from these by combining systems.
Thus, for example, the Einstein-perfect fluid system, as well as the special-
relativity-Maxwell system, also represent systems having an initial-value for-
mulation up to diffeomorphism gauge. Also, presumably, further examples
can be constructed by taking the derivative system [8] of some known exam-
ple.

The examples above are the only ones of which I am aware that have an
initial value formulation up to the gauge freedom of diffeomorphisms. Is there
any hope of finding all systems of first-order, quasilinear systems of partial
differential equations having this property? This may be feasible, for the
conditions of Sect. 4 do not look terribly complicated. A good starting point
might be to look for systems whose diffeomorphism-order exceeds two. There
may exist no such systems. Such a classification — particularly if relatively
few systems were permitted — would be of interest. After all, one could
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argue that the system of partial differential equations for any viable physical
theory shoud manifest an initial-value formulation and diffeomorphism gauge.
Thus, such a classification would represent the beginnings of a classification
of allowed physical theories — at least, physical theories described by partial
differential equations on a manifold.

Appendix A — Initial-Value Formulation

Fix a of first-order, quasilinear system, (1), of partial differential equations.
Let this system have constraints that are integrable and complete; and let
it also admit a hyperbolization, hAα. Let T be a submanifold of M of codi-
mension one, and φ0 a cross-section over T , such that i) this (T, φ0) satisfies
all the consistency conditions, (7), arising from (1), and ii) the normal na

of T at each of its points lies in the open sets of covectors associated with
completeness and with the hyperbolization. [That is, let (T, φ0) be “non-
characteristic”.] We sketch a partial proof of the following assertion: Under
the conditions above, there exists, in some neighborhood of T , one and only
one smooth solution φ of our system, (1), such that φ|T = φ0. What follows
is only a “partial proof” because, as we shall see, it contains a gap. This
appendix is an invitation to fill that gap.

Consider first the system of equations given by

hAβkAa
α(∇φ)a

α = hAβjA, (38)

i.e., the subsystem of (1) that results from contracting it with hAβ. This
system also has a hyperbolization (and, indeed, it is already in “symmetric-
hyperbolic form”), and its only constraint is zero. There is a standard theo-
rem [3] [10] [9] [6], whose proof uses an energy argument, to the effect that
this system, by virtue of its having a hyperbolization and zero constraints,
admits one and only one smooth solution, φ, in some neighborhood of T ,
manifesting the given initial data (T, φo). Thus (since every solution of (1)
is certainly a solution of (38)), we have shown uniqueness of solutions of (1).
There remains only existence, and the plan for this is to show that the solu-
tion φ, just obtained, of the subsystem (38) in fact satisfies the full system,
(1) of partial differential equations. To this end, consider the field IA, defined
in a neighborhood of T by

IA = kAa
α(∇φ)a

α − jA, (39)
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where, on the right, we have substituted our solution φ of (38). What we
must show, to prove existence, is IA = 0. To this end, we note that this field
IA has the following three properties. First, this IA satisfies the algebraic
(linear) system

hAαIA = 0 (40)

everywhere in our neighborhood of T . This is exactly (38). Second, this
IA vanishes on the submanifold T itself. To see this, first note that, by
the consistency conditions (7), we have that nac

a
AIA = 0 on T , for every

constraint ca
A of our system. But, by completeness, the hAα and nac

a
A (as

ca
A runs through the constraints) together span the equation covector space.

The result now follows from (40). The third property is that this IA satisfies
a system of (in fact, linear) partial differential equations of the form

ca
A∇aI

A = WA
BIB. (41)

Here, ca
A denotes any constraint of the original system, (1), and there is one

equation in (41) for each such constraint. Indeed, fixing the constraint ca
A,

that this equation hold, for some field WA
B on M , follows immediately from

integrability of that constraint.
Now consider the following first-order, quasilinear (in fact, linear) system

of partial differential equations: The field is IA subject to (40), and the
system of equations is (41). One solution of this system is the IA given by
(39), and this particular solution has IA = 0 on T . So, in order to prove
that the IA of (39) vanishes in our neighborhood of T , we need only show
uniqueness for this system, (40)-(41), with given initial values on T .

We first remark that, by completeness of (1), the system above takes
“evolution form”, i.e., it expresses the derivatives, off T , of every compo-
nent of IA in terms of IA and its derivatives within T . But this property
alone is not, apparently, sufficient to establish uniqueness. Uniqueness would
follow, from the standard existence/uniqueness theorem discussed earlier, if
we could find a hyperbolization for the system (40)-(41) (for it has only the
zero constraint). In fact, for every physical example of which I am aware,
this system does admit a hyperbolization. Thus, for all these physical ex-
amples, the system (1) does indeed manifest existence and uniqueness. But,
unfortunately, there has not been given, as far as I am aware, any general
proof of the existence of a hyperbolization for (40)-(41). Such a proof could,
of course, make use of the assumed integrability and completeness of the
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constraints, as well as the existence of a hyperbolization, for (1). It would
also be acceptable to impose, on the original system (1), suitable additional,
mild hypotheses. Of course, it would also suffice to prove uniqueness of the
system (40)-(41)) by some other means, i.e., without invoking the standard
existence/uniqueness theorem. This, then, is the gap. It would, I believe, be
of some interest to fill it.

Consider, as an example, the Maxwell system, (2)-(3). A hyperbolization
for this system is characterized by a timelike vector field ua on space-time.
Eqn. (38) reads in this case

uc∇[aFbc] = 0, u[a∇mFb]m = 0. (42)

The IA of (39) is given by

Iabc = ∇[aFbc], Ib = ∇aFab. (43)

The algebraic conditions, (40), on the IA become

ucIabc = 0, u[aIb] = 0. (44)

Finally, the equations, (41) on the IA become

∇[dIabc] = 0, ∇bIb = 0. (45)

So, our question becomes in this case: Does uniqueness hold for the system
(45) of partial differential equations, on fields consisting of (Iabc, Ib) subject
to (44)? The answer to this question is yes. Consider, e.g., the field Ib. Then
the first equation in (44) is precisely the statement that Ib = γub for some
function γ, whence (45) becomes ub∇bγ = −γ∇bu

b on gamma. But, clearly,
this partial differential equation on function γ on M satisfies uniqueness. [In
fact, it not only has a hyperbolization and so an initial-value formulation;
but it is actually an ordinary differential equation.] Dually for Iabc.

So, by the argument above, the Maxwell system admits an initial-value
formulation. A similar argument (checking directly and explicitly that the
system (40), (41) satisfies uniqueness) works for other systems (1) of partial
differential equations of physical interest. In particular, such an argument
works for the Einstein system, reduced, as in Sect 4, to a hyperbolic system.
What is now needed, in place of this piecemeal approach, is a general theorm.
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Appendix B — Linearization

In this appendix, we introduce, for any first-order, quasilinear system of par-
tial differential equations and any solution cross-section for that system, the
notion of the corresponding linearized system off that background solution.
As an application of this notion, we show that, the gauge vector fields, as we
would expect, generate linearized solutions.

Fix a first-order, quasilinear system (1), of partial differential equations;
and fix also any solution, φ, of this system, the “background field”. A lin-
earized solution off this background is a vertical vector field, µα, defined at
points of the image of φ, satisfying

[Lµk
Aa

α](∇φ)a
α = Lµj

A (46)

there. We must first check that the left side of this equation makes sense.
To this end, introduce any derivative operator ∇α on the bundle manifold B,
and write

[Lµk
Aa

α](∇φ)a
α = (∇φ)a

αµβ∇βkAa
α + (∇φ)a

αkAa
β∇αµβ. (47)

The derivative in the first term on the right makes sense, despite the Latin
index ”a” on kAa

α, because, by virtue of the factor µβ, that derivative is
taken only in a vertical direction. The derivative in the second term on
the right makes sense, despite the fact that µα is defined only on the cross-
section, because, by virtue of the factor (∇φ)a

α, that derivative is taken only
in directions tangent to the cross-section. Note that Eqn. (46) is linear:
The linearized solutions, for a given background cross-section, form a vector
space.

The motivation for this definition is the following. Fix a one-parameter
family, φλ, with λ ∈ R, of cross-sections, each satisfying the partial differen-
tial equation (1). Then dφλ/dλ|λ=0 defines, at each point of the λ = 0 cross-
section, a vertical vector field, µα. This vector, we claim, indeed satisfies (46).
To see this, take d/dλ, at λ = 0, of each of the equations kAa

α(∇φλ)a
α = jA

and π ◦ φλ = identity. We may think of the field µα as the “connecting vec-
tor” from a point of the background cross-section to a nearby cross-section;
and of Eqn. (46) as the condition that this nearby cross-section also satisfy
our original differential equation (1), to first order.

The linearized system, (46), has exactly the same coefficients as the orig-
inal system, (1), where the “unknown”, φ, in the coefficients in the latter is
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replaced by the fixed background field in the former. It follows that the lin-
earized system inherits all the properties of the original system. Thus, each
constraint of the original system gives rise to a constraint of the linearized
system; and the integrability and completeness of these constraints (should
these properties obtain in the original system) pass to the linearized system.
Furthermore, each hyperbolization of the original system gives rise to a corre-
sponding hyperbolization of the linearized system. We remark that all these
inheritances go also in the reverse direction, provided only that there exists
a “sufficient number” of solutions of Eqn. (1). What we require, in more
detail, is that some solution cross-section of (1) passes through each point of
B. In short, the linearized system is a good mirror of the original system of
partial differential equations.

Consider, for example, the Einstein system. Fix a solution, (gab,∇a),
of this system, (4)-(6). Then a vertical vector field on this cross-section is
described by a pair of tensor fields, (µbc, µ

a
bc), on the space-time manifold M ,

each symmetric in indices “b, c”. The linearized Einstein equations (i.e., the
linearized versions of (4)-(6)) are ∇aµbc− 2gm(bµ

m
c)a = 0, ∇[aµ

m
b](cgd)m = 0,

and ∇[aµ
m

m]b = 0, respectively.
We now return to the general case. As we have seen, every gauge trans-

formation sends every solution cross-section of Eqn. (1) to another solu-
tion cross-section. We now establish, as an example of the notion of the
linearized system, an an “infinitesimal version” of this statement. Let ξα

be any gauge vector field. Fix any cross-section, φ, satisfying Eqn (1).
Now consider, at each point of this cross-section, the vector given by µα =
ξα− ξµ(∇π)µ

a(∇φ)a
α. It follows immediately, applying (∇π)α

a, that this µα

is vertical. Thus, µα is just the gauge vector field ξα “projected vertically via
the cross-section φ”. Furthermore, it follows from Eqns. (12)-(13) that this
µα satisfies Eqn. (46), i.e., that it defines a linearized solution off the solution
φ. [The Lξ-part of Lµ in Eqn. (46) satisfies this equation, by (12)-(13). For
the (∇φ)a

αξa-part, use that this vector field is tangent to the cross-section,
and so automatically Lie-derives kAa

α(∇φ)a
α− jA.] Thus, each gauge vector

field assigns, to each cross-section satisfying the equation, a linearized solu-
tion. Is there a converse to this? There is, subject to a caveat. Let ξα be
any vector field on B with the following property: Given any cross-section, φ,
satisfying Eqn. (1), then the field µα, defined at points of the cross-section by
µα = ξα−ξa(∇φ)a

α, is a linearized solution. It then follows that this ξα satis-
fies the result of contracting (12) with (∇φ)a

α and subtracting (13), for every
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cross-section φ satisfying our equation. So, if there is a “sufficient number” of
solutions — e.g., if every νa

α at a bundle-point satisfying kAa
ανa

α = jA and
νa

α(∇π)α
b = δa

b is the derivative of some solution cross-section φ through
that point — then we are guaranteed to have (12)and (13) separately, and
so are guaranteed that ξα is a gauge vector field.

Consider, for example, the Einstein system, (4)-(6). Fix any smooth
vector field, ξa, on M . Then this ξa gives rise to a one-parameter family of
diffeomorphisms on the manifold M , and so, since we have the rule for how
such diffeomorphisms act on gab and ∇a, to a corresponding one-parameter
family of diffeomorphisms on the bundle manifold B. The generator of this
family is a certain gauge vector field ξα, for the Einstein system. This ξα is,
of course, a lift of the original field ξa on M . Now fix a solution cross-section
of this system, i.e., fix (gab,∇a) satisfying (4)-(6). Then this gauge vector
field gives rise, in the presence of this solution cross-section as background,
to a linearized solution, given by

µab = 2∇(aξb), (48)

µm
ab = ∇(a∇b)ξ

m + Rd(ab)
mξd. (49)

Note that the vertical vector µα given by (48)-(49) depends on the cross-
section, and not merely on the point (gab,∇a) of B. This is seen by noting
that the right side of (49) involves not only the derivative operator ∇a, but
also its derivative.
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